Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Biochim Biophys Acta Gen Subj ; 1868(8): 130635, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38788984

RESUMO

Gallein is known as an inhibitor of Gßγ subunits, but roles of gallein in bone metabolism have not been reported. Fibroblast growth factor 2 (FGF-2) increases angiogenesis and promotes bone regeneration during the early stages of fracture healing. Osteoprotegerin (OPG) secreted by osteoblasts, binds to the receptor activator of nuclear factor-κB (RANK) ligand (RANKL) as a decoy receptor and prevents RANKL from binding to RANK, resulting in the suppression of bone resorption. Our previous report demonstrated that FGF-2 activates the phosphorylation of p38 mitogen-activated protein kinase (MAPK), stress-activated protein kinase/c-Jun N-terminal kinase (JNK), and p44/p42 MAPK in osteoblast-like MC3T3-E1 cells. Additionally, FGF-2-activated phosphorylation of p38 MAPK and JNK but not p44/p42 MAPK is positively involved in OPG synthesis in these cells. This work aimed to investigate the effects of gallein on the FGF-2-elicited OPG synthesis in osteoblast-like MC3T3-E1 cells and the mechanism. Our findings demonstrated that gallein significantly increased the FGF-2-elicited OPG synthesis in MC3T3-E1 cells. By contrast, fluorescein, gallein-like compound that does not bind Gßγ, did not affect the FGF-2-elicited OPG synthesis. Gallein significantly enhanced the FGF-2-induced OPG mRNA expression levels. Gallein did not affect the FGF-2-activated phosphorylation of p38 MAPK and p44/p42 MAPK, but significantly increased the FGF-2-activated phosphorylation of JNK, while fluorescein did not affect JNK phosphorylation. SP600125, a specific JNK inhibitor, strongly inhibited gallein-induced enhancement of FGF-2-induced OPG synthesis and mRNA expression levels. Our results indicated that gallein increases the FGF-2-induced OPG synthesis due to the JNK activation in the osteoblast.

2.
Cell Biochem Funct ; 42(4): e4068, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38817105

RESUMO

Evidence is accumulating that osteal macrophages, in addition to bone-resorbing osteoclasts and bone-forming osteoblasts, participate vitally in bone remodeling process. Oncostatin M (OSM), an inflammatory cytokine belonging to interleukin-6 superfamily, is recognized as an essential factor secreted by osteal macrophages to orchestrate bone remodeling. Osteoprotegerin (OPG) produced by osteoblasts regulates osteoclastogenesis. We have reported that bone morphogenetic protein-4 (BMP-4) stimulates OPG synthesis in MC3T3-E1 osteoblast-like cells, and that SMAD1/5/8(9), p38 mitogen-activated protein kinase (MAPK), and p70 S6 kinase are involved in the OPG synthesis. The present study aims to investigate the effect of OSM on the synthesis of OPG stimulated by BMP-4 in osteoblasts. OSM suppressed the release and the mRNA expression of OPG upregulated by BMP-4 in MC3T3-E1 cells. Neither the BMP-4-induced phosphorylation of SMAD1/5/9 nor that of p38 MAPK was affected by OSM. On the other hand, the phosphorylation of p70 S6 kinase stimulated by BMP-4 was considerably suppressed by OSM. These results strongly suggest that OSM suppresses the BMP-4-stimulated OPG synthesis via inhibition of the p70 S6 kinase-mediated pathway in osteoblast-like cells.


Assuntos
Proteína Morfogenética Óssea 4 , Oncostatina M , Osteoblastos , Osteoprotegerina , Proteínas Quinases S6 Ribossômicas 70-kDa , Animais , Camundongos , Oncostatina M/farmacologia , Oncostatina M/metabolismo , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Osteoprotegerina/metabolismo , Osteoprotegerina/biossíntese , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Linhagem Celular
3.
World J Clin Cases ; 12(2): 302-313, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38313640

RESUMO

BACKGROUND: Akt plays diverse roles in humans. It is involved in the pathogenesis of type 2 diabetes mellitus (T2DM), which is caused by insulin resistance. Akt also plays a vital role in human platelet activation. Furthermore, the hippocampus is closely associated with memory and learning, and a decrease in hippocampal volume is reportedly associated with an insulin-resistant phenotype in T2DM patients without dementia. AIM: To investigate the relationship between Akt phosphorylation in unstimulated platelets and the hippocampal volume in T2DM patients. METHODS: Platelet-rich plasma (PRP) was prepared from the venous blood of patients with T2DM or age-matched controls. The pellet lysate of the centrifuged PRP was subjected to western blotting to analyse the phosphorylation of Akt, p38 mitogen-activated protein (MAP) kinase and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Phosphorylation levels were quantified by densitometric analysis. Hippocampal volume was analysed using a voxel-based specific regional analysis system for Alzheimer's disease on magnetic resonance imaging, which proposes the Z-score as a parameter that reflects hippocampal volume. RESULTS: The levels of phosphorylated Akt corrected with phosphorylated p38 MAP kinase were inversely correlated with the Z-scores in the T2DM subjects, whereas the levels of phosphorylated Akt corrected with GAPDH were not. However, this relationship was not observed in the control patients. CONCLUSION: These results suggest that an inverse relationship may exist between platelet Akt activation and hippocampal atrophy in T2DM patients. Our findings provide insight into the molecular mechanisms underlying T2DM hippocampal atrophy.

4.
Exp Ther Med ; 27(1): 34, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38125365

RESUMO

Bone remodeling is tightly controlled by various factors, including hormones, autacoids and cytokines. Among them, oncostatin M (OSM) is a multifunctional cytokine produced by osteal macrophages, which serves as an essential modulator of bone remodeling. Macrophage colony-stimulating factor (M-CSF) and osteoprotegerin are secreted by osteoblasts, and also have pivotal roles in the regulation of the bone remodeling process. The binding of basic fibroblast growth factor (bFGF), a key regulator of bone remodeling, to the corresponding receptor [fibroblast growth factor receptor (FGFR)] triggers the dimerization and activation of FGFRs, which causes the phosphorylation of FGFR substrates and subsequent activation of downstream effectors, including mitogen-activated protein kinases (MAPKs), via Grb2. bFGF can activate MAPKs, resulting in the synthesis of osteoprotegerin and vascular endothelial growth factor in osteoblast-like MC3T3-E1 cells. In the present study, the effects of OSM on bFGF-induced osteoblast activation were investigated in the synthesis of osteoprotegerin and M-CSF in osteoblasts. The release of osteoprotegerin and M-CSF were analyzed using ELISA. The mRNA expression levels of osteoprotegerin and M-CSF were analyzed using reverse transcription-quantitative PCR. Phosphorylation of p38 MAPK, stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p44/p42 MAPK was assessed using western blotting. OSM enhanced bFGF-induced osteoprotegerin release and bFGF-stimulated mRNA expression of osteoprotegerin. By contrast, OSM suppressed the bFGF-induced release of M-CSF and bFGF-stimulated mRNA expression of M-CSF. SB203580, a p38 MAPK inhibitor, and SP600125, a SAPK/JNK inhibitor, suppressed the bFGF-stimulated M-CSF release, whereas PD98059, an upstream kinase inhibitor of p44/p42 MAPK, failed to suppress the M-CSF release stimulated by bFGF. Furthermore, OSM enhanced the bFGF-induced phosphorylation of p38 MAPK, but attenuated the bFGF-stimulated phosphorylation of SAPK/JNK. By contrast, OSM had little effect on the bFGF-induced phosphorylation of p44/p42 MAPK. SB203580 markedly reduced the amplification of bFGF-stimulated osteoprotegerin release enhanced by OSM. These results strongly suggested that OSM may possess divergent effects on bFGF-induced osteoblast activation, upregulation of p38 MAPK and downregulation of SAPK/JNK, leading to the amplification of osteoprotegerin synthesis and the attenuation of M-CSF synthesis.

5.
Mol Med Rep ; 28(6)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37888538

RESUMO

Heat shock protein 70 (HSP70) functions as an ATP­dependent molecular chaperone under stress and is involved in protein homeostasis, folding and degradation. HSP70 inhibitors amplify TGF­ß­stimulated VEGF synthesis in the mouse osteoblastic MC3T3­E1 cell line. Basic fibroblast growth factor (bFGF) stimulates IL­6 release via p38 MAPK in MC3T3­E1 osteoblast­like cells. In the present study, the effects of HSP70 on the bFGF­stimulated release of IL­6 was evaluated using MC3T3­E1 osteoblast­like cells. IL­6 release and mRNA expression levels were analyzed using ELISA and reverse transcription­quantitative PCR, respectively. Phosphorylation of p38 MAPK and HSP70 was assessed using western blotting. HSP70 inhibitor VER­155008 significantly increased the bFGF­stimulated release of IL­6 in both MC3T3­E1 osteoblastic cells and normal human osteoblasts. Furthermore, VER­155008 significantly enhanced the mRNA expression levels of IL­6 stimulated by bFGF. Western blotting demonstrated a significant increase in the bFGF­stimulated phosphorylation of p38 MAPK in VER­155008­treated MC3T3­E1 cells. A significant increase in the bFGF­stimulated phosphorylation of p38 MAPK was also demonstrated in MC3T3­E1 cells treated with YM­08, another HSP70 inhibitor. VER­155008 or YM­08 did not significantly affect the expression of HSP70 with or without bFGF stimulation. Finally, the specific p38 MAPK inhibitor SB203580 markedly suppressed the enhancing effects of VER­155008 on bFGF­stimulated release of IL­6. Taken together, these results indicated that HSP70 inhibitor amplified bFGF­stimulated release of IL­6 through p38 MAPK activation in the osteoblastic MC3T3­E1 cell line.


Assuntos
Antineoplásicos , Interleucina-6 , Animais , Camundongos , Humanos , Interleucina-6/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Osteoblastos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosforilação , Antineoplásicos/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Biosci Biotechnol Biochem ; 87(12): 1462-1469, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37709574

RESUMO

Resveratrol is a natural polyphenol found in grapes and beneficial for human health. Resveratrol regulates basic fibroblast growth factor (bFGF)-induced osteoprotegerin synthesis through Akt pathway in osteoblast-like MC3T3-E1 cells. In this study, we investigated resveratrol effects on bFGF-induced macrophage colony-stimulating factor (M-CSF) synthesis in MC3T3-E1 cells. bFGF significantly stimulated release and mRNA expression of M-CSF, which was reduced by resveratrol and SRT1720, sirtuin 1 (SIRT1) activator. Inauhzin, SIRT1 inhibitor, reversed inhibitory effects of resveratrol on bFGF-induced mRNA expression of M-CSF. Deguelin, Akt inhibitor, and LY294002, phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, reduced bFGF-induced M-CSF synthesis. Inauhzin reversed inhibitory effects of resveratrol on bFGF-induced Akt phosphorylation. Suppressive effect of resveratrol on bFGF-induced osteoprotegerin mRNA expression was confirmed in the identical samples using in experiment of M-CSF mRNA expression. Therefore, resveratrol reduces bFGF-induced M-CSF synthesis in addition to osteoprotegerin synthesis by inhibiting PI3-kinase/Akt pathway and suppressive effects are mediated through SIRT1 activation in osteoblasts.


Assuntos
Osteoprotegerina , Fosfatidilinositol 3-Quinase , Resveratrol , Fator 2 de Crescimento de Fibroblastos/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator Estimulador de Colônias de Macrófagos/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Osteoblastos/metabolismo , Osteoprotegerina/efeitos dos fármacos , Osteoprotegerina/metabolismo , Fosfatidilinositol 3-Quinase/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resveratrol/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Camundongos , Animais
7.
Artigo em Inglês | MEDLINE | ID: mdl-37094446

RESUMO

Oncostatin M produced by osteal macrophages plays a significant role in fracture healing. Osteoprotegerin (OPG) secreted by osteoblasts, binds to the receptor activator of nuclear factor-κB (RANK) ligand (RANKL) as a decoy receptor and prevents RANKL from binding to RANK, resulting in bone resorption suppression. Interleukin-6 (IL-6) is a pro-inflammatory cytokine and generally regulates bone resorption. However, accumulating evidence suggests that IL-6 plays pivotal roles in bone formation. We previously showed that prostaglandin D2 (PGD2) induces OPG synthesis by activating p38 mitogen-activated protein (MAP) kinase, stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and p44/p42 MAP kinase in osteoblast-like MC3T3-E1 cells. Furthermore, we demonstrated that PGD2 stimulates IL-6 synthesis by activating p38 MAP kinase and p44/p42 MAP kinase in MC3T3-E1 cells. In the present study, we investigated whether oncostatin M affects PGD2-stimulated OPG and IL-6 synthesis in MC3T3-E1 cells through MAP kinase activation. The osteoblast-like MC3T3-E1 cells and normal human osteoblasts were treated with oncostatin M and subsequently stimulated with PGD2. Consequently, oncostatin M significantly increased the PGD2-stimulated OPG and IL-6 release in both cells. Oncostatin M significantly enhanced mRNA expression levels of OPG and IL-6 induced by PGD2 similarly in both cells. Regarding the signaling mechanism, oncostatin M did not affect the phosphorylation of p38 MAP kinase, SAPK/JNK, and p44/p42 MAP kinase. Our results suggest that oncostatin M upregulates the PGD2-stimulated OPG and IL-6 synthesis in osteoblasts and therefore affects bone remodeling. However, OPG and IL-6 synthesis are not mediated through p38 MAP kinase, p44/p42 MAP kinase, or SAPK/JNK pathways.


Assuntos
Interleucina-6 , Prostaglandinas , Humanos , Prostaglandinas/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Osteoprotegerina/genética , Oncostatina M/farmacologia , Oncostatina M/metabolismo , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Osteoblastos/metabolismo
8.
PLoS One ; 18(1): e0279011, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36638092

RESUMO

Tramadol is a useful analgesic which acts as a serotonin and noradrenaline reuptake inhibitor in addition to µ-opioid receptor agonist. Cytoplasmic serotonin modulates the small GTPase activity through serotonylation, which is closely related to the human platelet activation. We recently reported that the combination of subthreshold collagen and CXCL12 synergistically activates human platelets. We herein investigated the effect and the mechanism of tramadol on the synergistic effect. Tramadol attenuated the synergistically stimulated platelet aggregation (300 µM of tramadol, 64.3% decrease, p<0.05). Not morphine or reboxetine, but duloxetine, fluvoxamine and sertraline attenuated the synergistic effect of the combination on the platelet aggregation (30 µM of fluvoxamine, 67.3% decrease, p<0.05; 30 µM of sertraline, 67.8% decrease, p<0.05). The geranylgeranyltransferase inhibitor GGTI-286 attenuated the aggregation of synergistically stimulated platelet (50 µM of GGTI-286, 80.8% decrease, p<0.05), in which GTP-binding Rac was increased. The Rac1-GEF interaction inhibitor NSC23766 suppressed the platelet activation and the phosphorylation of p38 MAPK and HSP27 induced by the combination of collagen and CXCL12. Tramadol and fluvoxamine almost completely attenuated the levels of GTP-binding Rac and the phosphorylation of both p38 MAPK and HSP27 stimulated by the combination. Suppression of the platelet aggregation after the duloxetine administration was observed in 2 of 5 patients in pain clinic. These results suggest that tramadol negatively regulates the combination of subthreshold collagen and CXCL12-induced platelet activation via Rac upstream of p38 MAPK.


Assuntos
Tramadol , Humanos , Tramadol/farmacologia , Proteínas de Choque Térmico HSP27/metabolismo , Quinases Associadas a rho , Cloridrato de Duloxetina/farmacologia , Fluvoxamina , Serotonina/farmacologia , Sertralina/farmacologia , Plaquetas/metabolismo , Agregação Plaquetária , Colágeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Guanosina Trifosfato , Fosforilação
9.
Connect Tissue Res ; 64(2): 139-147, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35986560

RESUMO

BACKGROUND: Oncostatin M produced by osteal macrophages, a cytokine that belongs to the interleukin-6 family, is implicated in bone fracture healing. Macrophage colony-stimulating factor (M-CSF) secreted from osteoblasts plays an important role in osteoclastogenesis. We have previously reported that tumor necrosis factor-α (TNF-α), a potent bone resorptive agent, stimulates the activation of p44/p42 mitogen-activated protein (MAP) kinase, Akt, and p70 S6 kinase in osteoblast-like MC3T3-E1 cells, and induces the synthesis of M-CSF at least in part via Akt. OBJECTIVE: In the present study, we investigated whether oncostatin M affects the TNF-α-induced M-CSF synthesis in MC3T3-E1 cells and the underlying mechanisms. METHODS: Clonal osteoblast-like MC3T3-E1 cells were treated with oncostatin M or rapamycin and then stimulated with TNF-α. M-CSF release was assessed by ELISA. M-CSF mRNA expression level was assessed by real-time RT-PCR. Phosphorylation of Akt, p44/p42 MAP kinase, and p70 S6 kinase was detected by Western blot analysis. RESULTS: Oncostatin M dose-dependently reduced the TNF-α-stimulated M-CSF release. The expression of M-CSF mRNA induced by TNF-α was significantly suppressed by oncostatin M. Rapamycin, an inhibitor of mTOR/p70 S6 kinase, had little effect on the M-CSF release by TNF-α. Oncostatin M significantly reduced the TNF-α-induced phosphorylation of Akt and p44/p42 MAP kinase. However, the p70 S6 kinase phosphorylation by TNF-α was not affected by oncostatin M. CONCLUSION: These results strongly suggest that oncostatin M attenuates TNF-α-stimulated synthesis of M-CSF in osteoblasts, and the inhibitory effect is exerted at a point upstream of Akt and p44/p42 MAP kinase but not p70 S6 kinase.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/farmacologia , Oncostatina M/farmacologia , Oncostatina M/metabolismo , Fosforilação , Sirolimo/farmacologia , Osteoblastos/metabolismo , RNA Mensageiro/metabolismo , Macrófagos/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteínas Quinases S6 Ribossômicas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno
10.
Biomed Res ; 43(6): 211-221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36517023

RESUMO

Selective estrogen receptor modulator (SERM) binds to estrogen receptors (ERs) and acts as both an agonist or an antagonist, depending on the target tissue. Raloxifene and bazedoxifene as SERMs are currently used hormone replacement medicines for postmenopausal osteoporosis. Macrophage colony-stimulating factor (M-CSF) secreted from osteoblasts promotes osteoclastogenesis. We have previously demonstrated that transforming growth factor (TGF)-ß induces the synthesis of M-CSF via SMAD2/3, p38 mitogen-activated protein kinase (MAPK), p44/p42 MAPK and c-Jun N-terminal kinase (JNK) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether SERM affects the M-CSF synthesis by TGF-ß in MC3T3-E1 cells. Raloxifene and bazedoxifene significantly suppressed the synthesis of M-CSF. PPT, an ERα agonist, but not ERB041, an ERß agonist, inhibited the release of M-CSF. MPP, an ERα antagonist, reversed the suppression by raloxifene of the M-CSF release. Raloxifene attenuated the TGF-ß-induced phosphorylation of JNK but not SMAD3, p42 MAPK and p38 MAPK. Bazedoxifene and PPT also inhibited the phosphorylation of JNK. Furthermore, MPP, an ERα antagonist, reversed the suppression by both raloxifene and bazedoxifene of the phosphorylation of JNK. Our results strongly indicate that raloxifene and bazedoxifene, SERMs, suppress the TGF-ß-induced synthesis of M-CSF through ERα-mediated inhibition of JNK pathway in osteoblasts.


Assuntos
Moduladores Seletivos de Receptor Estrogênico , Fator de Crescimento Transformador beta , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Moduladores Seletivos de Receptor Estrogênico/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Sistema de Sinalização das MAP Quinases , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Cloridrato de Raloxifeno/metabolismo , Cloridrato de Raloxifeno/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Osteoblastos/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosforilação
11.
Acute Med Surg ; 9(1): e769, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782955

RESUMO

Aim: In acute medicine, we occasionally treat life-threatening conditions such as sepsis and trauma, which cause severe thrombocytopenia. Serum thrombopoietin levels have been reported to increase under the condition of thrombocytopenia related to severity. Collagen is a crucial activator of platelets, and Rho family members, such as Rho/Rho-kinase and Rac, play roles as active molecules involved in the intracellular signaling pathways in platelet activation. The present study aimed to elucidate the effects of thrombopoietin (TPO) on subthreshold low-dose collagen-stimulated human platelets in terms of Rho/Rho-kinase and Rac. Methods: Platelet-rich plasma donated from healthy volunteers was stimulated by the subthreshold low-dose of collagen after pretreatment with TPO and/or NSC23766, an inhibitor of the Rac-guanine nucleotide exchange factor interaction, or Y27632, an inhibitor of Rho-kinase. Platelet aggregation was measured using an aggregometer based on laser-scattering methods. Proteins involved in intracellular signaling were analyzed using western blotting, and the secretion of platelet-derived growth factor-AB from activated platelets was determined using an enzyme-linked immunosorbent assay. Results: Under the existence of TPO, the low dose of collagen remarkably elicited the aggregation and platelet-derived growth factor-AB secretion of platelets, which were suppressed by NSC23766 and Y27632. The combination of TPO and collagen considerably induced a transient increase of guanosine triphosphate (GTP)-binding Rac and GTP-binding Rho followed by an increase of phosphorylated cofilin, a Rho-kinase substrate. Conclusion: These results strongly suggest that TPO and collagen in low doses cooperatively potentiate human platelet activation through both Rac and Rho/Rho-kinase mediated pathways.

12.
BMC Musculoskelet Disord ; 23(1): 495, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35619094

RESUMO

BACKGROUND: Heat shock protein (HSP) 90 functions as a molecular chaperone and is constitutively expressed and induced in response to stress in many cell types. We have previously demonstrated that transforming growth factor-ß (TGF-ß), the most abundant cytokine in bone cells, induces the expression of HSP27 through Smad2, p44/p42 mitogen-activated protein kinase (MAPK), p38 MAPK, and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in mouse osteoblastic MC3T3-E1 cells. This study investigated the effects of HSP90 on the TGF-ß-induced HSP27 expression and the underlying mechanism in mouse osteoblastic MC3T3-E1 cells. METHODS: Clonal osteoblastic MC3T3-E1 cells were treated with the HSP90 inhibitors and then stimulated with TGF-ß. HSP27 expression and the phosphorylation of Smad2, p44/p42 MAPK, p38 MAPK, and SAPK/JNK were evaluated by western blot analysis. RESULT: HSP90 inhibitors 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17-DMAG) and onalespib significantly enhanced the TGF-ß-induced HSP27 expression. TGF-ß inhibitor SB431542 reduced the enhancement by 17-DMAG or onalespib of the TGF-ß-induced HSP27 expression levels. HSP90 inhibitors, geldanamycin, onalespib, and 17-DMAG did not affect the TGF-ß-stimulated phosphorylation of Smad2. Geldanamycin did not affect the TGF-ß-stimulated phosphorylation of p44/p42 MAPK or p38 MAPK but significantly enhanced the TGF-ß-stimulated phosphorylation of SAPK/JNK. Onalespib also increased the TGF-ß-stimulated phosphorylation of SAPK/JNK. Furthermore, SP600125, a specific inhibitor for SAPK/JNK, significantly suppressed onalespib or geldanamycin's enhancing effect of the TGF-ß-induced HSP27 expression levels. CONCLUSION: Our results strongly suggest that HSP90 inhibitors upregulated the TGF-ß-induced HSP27 expression and that these effects of HSP90 inhibitors were mediated through SAPK/JNK pathway in osteoblasts.


Assuntos
Proteínas de Choque Térmico HSP27 , Fator de Crescimento Transformador beta , Animais , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP27/farmacologia , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/farmacologia , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/farmacologia , Humanos , Camundongos , Osteoblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia
13.
Biomed Res ; 43(2): 41-51, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431291

RESUMO

Bone fracture is an important trauma frequently encountered into emergency medicine as well as orthopedics reflecting an aging society. Oncostatin M, an inflammatory cytokine produced by osteal macrophages, has been considered to play a crucial role in fracture healing. Macrophage colony-stimulating factor (M-CSF) secreted from osteoblasts is essential in osteoclastgenesis, and the secretion is stimulated by transforming growth factor-ß (TGF-ß). The aim of this study is to elucidate the effects of oncostatin M on the TGF-ß-induced M-CSF synthesis in osteoblast-like MC3T3-E1 cells and the underlying mechanisms. Oncostatin M attenuated the TGF-ß-stimulated M-CSF release and the mRNA expressions. SMAD3 inhibitor SIS3, p38 MAP kinase inhibitor SB203580, MEK1/2 inhibitor PD98059, and SAPK/JNK inhibitor SP600125 significantly suppressed the M-CSF release. Oncostatin M suppressed the TGF-ß-induced phosphorylation of p44/p42 MAP kinase and SAPK/JNK, but failed to affect the phosphorylation of SMAD3 and p38 MAP kinase. Oncostatin M attenuated the TGF-ß-stimulated vascular endothelial growth factor (VEGF) release and the TGF-ß-induced mRNA expressions of VEGF. These results strongly suggest that oncostatin M downregulates TGF-ß signaling upstream of p44/p42 MAP kinase and SAPK/JNK, but not SMAD 2/3 and p38 MAP kinase, in osteoblasts, leading to the attenuation of M-CSF synthesis. Our findings might provide a new therapeutic strategy for the acceleration of fracture healing process.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno , Fator de Crescimento Transformador beta , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Oncostatina M/metabolismo , Oncostatina M/farmacologia , Osteoblastos/metabolismo , Fosforilação , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
J Clin Med ; 11(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35407659

RESUMO

Psoriatic arthritis (PsA) is a chronic inflammatory disorder that affects approximately 20-30% of patients with psoriasis. PsA causes deformities and joint damage, impairing quality of life and causing long-term functional disability. Several recent studies demonstrated that early diagnosis and intervention for PsA prevents permanent invalidity. However, the clinical features of PsA vary and are shared with other differential diseases, such as reactive arthritis, osteoarthritis, and ankylosing spondylitis. The common and overlapping features among these diseases complicate the accurate early diagnosis and intervention of PsA. Therefore, this review focuses on the current knowledge of the diagnosis of early PsA and discusses the meaning of early intervention for early PsA.

15.
Horm Metab Res ; 54(1): 42-49, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34986499

RESUMO

Incretins including glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), which are secreted from the small intestine after oral food ingestion, are currently well-known to stimulate insulin secretion from pancreatic ß-cells and used for the treatment of type 2 diabetes mellitus. We have previously reported that prostaglandin F2α (PGF2α) stimulates the synthesis of interleukin-6 (IL-6) and osteoprotegerin in osteoblast-like MC3T3-E1 cells, and that IL-6 and osteoprotegerin release are mediated through the p44/p42 mitogen-activated protein (MAP) kinase, p38 MAP kinase or stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) pathways. In the present study, we investigated the effects of incretins including GLP-1 and GIP, on the PGF2α-induced synthesis of IL-6 and osteoprotegerin and examined the detailed mechanism in osteoblast-like MC3T3-E1 cells. We found that GIP and GLP-1 significantly stimulated the PGF2α-induced synthesis of IL-6 in osteoblast-like MC3T3-E1 cells. In addition, GIP and GLP-1 significantly enhanced the PGF2α-induced mRNA expression levels of IL-6. On the other hand, GIP and GLP-1 markedly stimulated the PGF2α-induced synthesis of osteoprotegerin. However, the phosphorylation of p44/p42 MAP kinase, p38 MAP kinase, or JNK induced by PGF2α was not affected by GIP or GLP-1. Therefore, these results strongly suggest that incretins enhance the PGF2α-induced synthesis of IL-6 and osteoprotegerin in osteoblast-like MC3T3-E1 cells. However, these syntheses are not mediated through p44/p42 MAP kinase, p38 MAP kinase, or JNK pathways.


Assuntos
Dinoprosta/farmacologia , Polipeptídeo Inibidor Gástrico/farmacologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Incretinas/metabolismo , Interleucina-6/biossíntese , Osteoblastos/metabolismo , Osteoprotegerina/biossíntese , Animais , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-6/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Connect Tissue Res ; 63(4): 359-369, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34100663

RESUMO

BACKGROUND: We have demonstrated that epidermal growth factor (EGF)-induced migration of osteoblast-like MC3T3-E1 cells is mediated through p44/p42 mitogen-activated protein (MAP) kinase, p38 MAP kinase, stress-activated protein kinase/ c-Jun N-terminal kinase (SAPK/JNK), and Akt.The molecular chaperone heat shock protein 90 (HSP90) is abundantly expressed in osteoblasts. However, the role of HSP90 in osteoblast migration remains obscure. OBJECTIVE: In this study, we investigated the effect of HSP90 inhibitors on the EGF-induced migration of MC3T3-E1 cells and the mechanism. METHODS: Clonal osteoblast-like MC3T3-E1 cells were treated with the HSP90 inhibitors geldanamycin or onalespib and then stimulated with EGF. Cell migration was evaluated using the transwell cell migration assay and wound-healing assay. The viability of MC3T3-E1 cells was analyzed using the Cell Counting Kit-8. The phosphorylation of p44/p42 MAP kinase, p38 MAP kinase, SAPK/JNK, Akt, and protein kinase-like endoplasmic reticulum kinase (PERK) was evaluated by western blot analysis. RESULTS: EGF-induced migration was significantly suppressed by geldanamycin and onalespib, evaluated by both transwell cell migration assay and wound-healing assay. Geldanamycin and onalespib did not significantly alter cell viability. Geldanamycin and onalespib markedly reduced the EGF-induced phosphorylation of p44/p42 MAP kinase, but not p38 MAP kinase or Akt. By contrast, geldanamycin and onalespib increased the EGF-induced phosphorylation of SAPK/JNK. PERK phosphorylation was not significantly affected by geldanamycin or onalespib. CONCLUSION: Our results strongly suggest that HSP90 inhibitors reduce the EGF-induced osteoblast migration through the p44/p42 MAP kinase.


Assuntos
Fator de Crescimento Epidérmico , Proteína Quinase 1 Ativada por Mitógeno , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/farmacologia , Osteoblastos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-34392133

RESUMO

Tramadol, a weak µ-opioid receptor (MOR) agonist with inhibitory effects on the reuptake of serotonin (5-hydroxytryptamine; 5-HT) and norepinephrine, is an effective analgesic to chronic pains. Osteoprotegerin produced by osteoblasts is essential for bone remodeling to suppress osteoclastic bone resorption. We previously reported that prostaglandin D2 (PGD2) induces osteoprotegerin synthesis whereby p44/p42 mitogen-activated protein (MAP) kinase, p38 MAP kinase and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) are involved in osteoblast-like MC3T3-E1 cells. Herein, we investigated the mechanism underlying the effect of tramadol on the PGD2-induced osteoprotegerin synthesis in these cells. Tramadol enhanced the PGD2-induced release and mRNA expression of osteoprotegerin. Naloxone, a MOR antagonist, reduced the amplification by tramadol of the PGD2-stimulated osteoprotegerin release. Not the selective norepinephrine reuptake inhibitor reboxetine but the selective serotonin reuptake inhibitors fluvoxamine and sertraline upregulated the PGD2-induced osteoprotegerin release, which was further amplified by morphine. Tramadol enhanced PGD2-stimulated phosphorylation of p38 MAP kinase and SAPK/JNK, but not p44/p42 MAP kinase. Both SB203580 and SP600125 suppressed the tramadol effect to enhance the PGD2-stimulated osteoprotegerin release. Tramadol enhanced the PGE2-induced osteoprotegerin release as well as PGD2. These results suggest that tramadol amplifies the PGD2-induced osteoprotegerin synthesis at the upstream of p38 MAP kinase and SAPK/JNK in the involvement of both MOR and 5-HT transporter in osteoblasts.


Assuntos
Analgésicos Opioides/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoprotegerina/efeitos dos fármacos , Prostaglandina D2/farmacologia , Receptores Opioides mu/agonistas , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Tramadol/farmacologia , Animais , Antracenos/farmacologia , Remodelação Óssea/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fluvoxamina/farmacologia , Imidazóis/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Osteoblastos/metabolismo , Osteoprotegerina/biossíntese , Piridinas/farmacologia , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Sertralina/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
Biomed Pharmacother ; 141: 111816, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34126350

RESUMO

BACKGROUND: Olive oil polyphenols, which possess cytoprotective activities like anti-oxidant and anti-inflammatory effects, could modulate osteoblast functions. The aim of this study is to elucidate the effects and the underlying mechanisms of hydroxytyrosol and oleuropein on the tumor necrosis factor-α (TNF-α)-induced macrophage colony-stimulating factor (M-CSF) and interleukin-6 (IL-6) synthesis in osteoblasts. METHODS: Osteoblast-like MC3T3-E1 cells were pretreated with hydroxytyrosol, oleuropein, deguelin, PD98059 or wedelolactone, and then stimulated by TNF-α. The levels of M-CSF and IL-6 in the conditioned medium were determined with ELISA. The mRNA expression levels of M-CSF or IL-6 were determined with real-time RT-PCR. The phosphorylation levels of Akt, p44/p42 mitogen-activated protein (MAP) kinase or NF-κB in the cell lysates were determined with Western blot analysis. RESULTS: Hydroxytyrosol and oleuropein attenuated the TNF-α-stimulated M-CSF release. Deguelin, an inhibitor of Akt, significantly suppressed the TNF-α-stimulated M-CSF release, which failed to be affected by the MEK1/2 inhibitor PD98059 or the IκB inhibitor wedelolactone. Hydroxytyrosol and oleuropein suppressed the TNF-α-induced phosphorylation of Akt and p44/p42 MAP kinase. Hydroxytyrosol and oleuropein attenuated the TNF-α-stimulated IL-6 release. Hydroxytyrosol suppressed the TNF-α-induced mRNA expressions of M-CSF and IL-6. Hydroxytyrosol or oleuropein failed to affect the cell viability. CONCLUSION: Our present findings strongly suggest that olive oil polyphenols hydroxytyrosol and oleuropein down-regulates TNF-α signaling at the points upstream of Akt and p44/p42 MAP kinase in osteoblasts, leading to the attenuation of M-CSF and IL-6 synthesis.


Assuntos
Interleucina-6/biossíntese , Fator Estimulador de Colônias de Macrófagos/biossíntese , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Olea/química , Proteína Oncogênica v-akt/antagonistas & inibidores , Polifenóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Células 3T3 , Animais , Meios de Cultivo Condicionados , Glucosídeos Iridoides/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Rotenona/análogos & derivados , Rotenona/farmacologia
19.
Biomed Res ; 42(2): 77-84, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33840687

RESUMO

Acetaminophen is one of the most widely used analgesic and antipyretic medicines, whose long-period use has reportedly been associated with an increased risk of bone fracture. However, the mechanism underlying this undesired effect remains to be investigated. The homeostatic control of bone tissue depends on the interaction between osteoblasts and osteoclasts. Osteoprotegerin produced by osteoblasts is known to play an essential role in suppressing osteoclast induction. We have previously reported that prostaglandin (PG) E2 and PGF2α induce osteoprotegerin synthesis through p38 mitogen-activated protein kinase (MAPK), p44/p42 MAPK and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effects of acetaminophen on the osteoprotegerin synthesis induced by PGE2 and PGF2α in MC3T3-E1 cells. Acetaminophen significantly suppressed the osteoprotegerin release stimulated by PGE2 and PGF2α. The PGE2-induced expression of osteoprotegerin mRNA was also reduced by acetaminophen. Acetaminophen markedly downregulated the phosphorylation of SAPK/JNK stimulated by PGE2 and PGF2α, but not those of p38 MAPK or p44/p42 MAPK. SP600125, an inhibitor of SAPK/JNK, suppressed the levels of PGE2- and PGF2α-upregulated osteoprotegerin mRNA expression. Taken together, these results strongly suggest that acetaminophen reduces the PGE2- and PGF2α-stimulated synthesis of osteoprotegerin in osteoblasts, and that the suppressive effect is exerted via attenuation of SAPK/JNK. These findings provide a molecular basis for the possible effect of acetaminophen on bone tissue metabolism.


Assuntos
Acetaminofen/farmacologia , Dinoprosta/biossíntese , Dinoprostona/biossíntese , MAP Quinase Quinase 4/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoprotegerina/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células 3T3 , Animais , Antracenos , Remodelação Óssea , Osso e Ossos/efeitos dos fármacos , Densitometria , Regulação para Baixo , Camundongos , Fosforilação
20.
Biochem Cell Biol ; 99(5): 578-586, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33646885

RESUMO

Duloxetine, a selective serotonin-norepinephrine reuptake inhibitor, is currently recommended for the treatment of chronic painful disorders such as fibromyalgia, chronic musculoskeletal pain, and diabetic peripheral neuropathy. We previously demonstrated that bone morphogenetic protein-4 (BMP-4) stimulates osteoprotegerin (OPG) production in osteoblast-like MC3T3-E1 cells, and that p70 S6 kinase positively regulates OPG synthesis. The present study aimed to investigate the effect of duloxetine on BMP-4-stimulated OPG synthesis in these cells. Duloxetine dose-dependently suppressed OPG release stimulated by BMP-4. Fluvoxamine, a selective serotonin reuptake inhibitor (SSRI), reduced BMP-4-stimulated OPG release, whereas a selective and specific norepinephrine reuptake inhibitor, reboxetine, failed to affect OPG release. In addition, another SSRI sertraline also inhibited BMP-4-stimulated OPG release. On the other hand, siRNA of SMAD1 reduced the OPG release stimulated by BMP-4, indicating the involvement of the SMAD1/5/8 pathway in OPG release. Rapamycin inhibited BMP-4-stimulated p70 S6 kinase phosphorylation, and compound C suppressed the SMAD1/5/8 phosphorylation stimulated by BMP-4. Duloxetine did not affect BMP-4-induced phosphorylation of p70 S6 kinase but suppressed SMAD1/5/8 phosphorylation. Both fluvoxamine and sertraline also inhibited BMP-4-elicited phosphorylation of SMAD1/5/8. These results strongly suggest that duloxetine suppresses BMP-4-stimulated OPG release via inhibition of the Smad1/5/8 signaling pathway in osteoblasts.


Assuntos
Proteína Morfogenética Óssea 4/antagonistas & inibidores , Cloridrato de Duloxetina/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoprotegerina/antagonistas & inibidores , Células 3T3 , Animais , Proteína Morfogenética Óssea 4/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Osteoblastos/metabolismo , Osteoprotegerina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad1/antagonistas & inibidores , Proteína Smad1/metabolismo , Proteína Smad5/antagonistas & inibidores , Proteína Smad5/metabolismo , Proteína Smad8/antagonistas & inibidores , Proteína Smad8/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA