Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Microbiol Resour Announc ; : e0102423, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700349

RESUMO

Whole-genome sequencing (WGS) was used to characterize four Salmonella enterica Enteritidis isolates from poultry (n=2) and human (n=2) from Ouagadougou, Burkina Faso. Antimicrobial resistance genes, chromosomal mutations, and mobile genetic elements were identified by analysis of WGS data using sequence homology.

2.
Front Vet Sci ; 10: 1256997, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053814

RESUMO

Bovine respiratory disease (BRD) is a leading cause of disease in feedlot and stocker calves with Mannheimia haemolytica (MH) as one of the most common etiologies. One of the most effective means of controlling BRD is through metaphylaxis, which involves administering antimicrobials to all animals at high risk of developing BRD. However, increasing prevalence of multidrug resistant (MDR) MH may reduce efficacy of metaphylaxis due to decreased susceptibility to drugs used for metaphylaxis. Primarily, this study aimed to determine the effect of tulathromycin metaphylaxis and subsequent BRD treatment on antimicrobial resistance (AMR) in MH isolated from stocker calves. Secondary objectives included evaluating the effect of metaphylaxis and treatment for BRD on animal health and comparing the genetic relationship of MH isolated. Crossbred beef heifers (n = 331, mean weight = 232, SD = 17.8 kg) at high risk for BRD were randomly assigned to receive tulathromycin metaphylaxis (META, n = 167) or not (NO META, n = 164). Nasopharyngeal swabs were collected for MH isolation, antimicrobial susceptibility testing and whole genome sequencing at arrival and 3 (WK3) and 10 (WK10) weeks later. Mixed-effects logistic regression was used to identify risk factors for isolation of MH and MDR MH (resistant to ≥3 antimicrobial drug classes) at 3 and 10 weeks, BRD morbidity, and crude mortality. Animals in the META group had higher odds of isolation of MDR MH at 3 weeks [OR (95% CI) = 13.08 (5-30.9), p < 0.0001] and 10 weeks [OR (95% CI) = 5.92 (1.34-26.14), p = 0.019] after arrival. There was no difference in risk of isolation of any MH (resistant or susceptible) between META and NO META groups at all timepoints. Animals in the NO META group had 3 times higher odds of being treated for BRD [WK3: OR (95% CI) = 3.07 (1.70-5.52), p = 0.0002; WK10: OR (95% CI) = 2.76 (1.59-4.80), p = 0.0002]. Antimicrobial resistance genes found within isolates were associated with integrative conjugative element (ICE) genes. Tulathromycin metaphylaxis increased risk of isolation of MDR MH and in this population, the increase in MDR MH appeared to be associated with ICE containing antimicrobial resistance genes for multiple antimicrobial classes. This may have important implications for future efficacy of antimicrobials for control and treatment of BRD.

3.
Antibiotics (Basel) ; 12(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37998788

RESUMO

The aquatic environment has been recognized as a source of antibiotic resistance (AR) that factors into the One Health approach to combat AR. To provide much needed data on AR in the environment, a comprehensive survey of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and antibiotic residues was conducted in a mixed-use watershed and wastewater treatment plants (WWTPs) within the watershed to evaluate these contaminants in surface water. A culture-based approach was used to determine prevalence and diversity of ARB in surface water. Low levels of AR Salmonella (9.6%) and Escherichia coli (6.5%) were detected, while all Enterococcus were resistant to at least one tested antibiotic. Fewer than 20% of extended-spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae (17.3%) and carbapenem-resistant Enterobacteriaceae (CRE) (7.7%) were recovered. Six ARGs were detected using qPCR, primarily the erythromycin-resistance gene, ermB. Of the 26 antibiotics measured, almost all water samples (98.7%) had detectable levels of antibiotics. Analysis of wastewater samples from three WWTPs showed that WWTPs did not completely remove AR contaminants. ARGs and antibiotics were detected in all the WWTP effluent discharges, indicating that WWTPs are the source of AR contaminants in receiving water. However, no significant difference in ARGs and antibiotics between the upstream and downstream water suggests that there are other sources of AR contamination. The widespread occurrence and abundance of medically important antibiotics, bacteria resistant to antibiotics used for human and veterinary purposes, and the genes associated with resistance to these antibiotics, may potentially pose risks to the local populations exposed to these water sources.

4.
Lett Appl Microbiol ; 76(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37505450

RESUMO

A globally circulating strain of Salmonella enterica serotype Infantis containing the pESI plasmid has increased in prevalence in poultry meat samples and cases of human infections. In this study, a polymerase chain reaction (PCR) protocol was designed to detect the pESI plasmid and confirm the Infantis serotype of Salmonella isolates. Primers were tested bioinformatically to predict specificity, sensitivity, and precision. A total of 54 isolates of Salmonella serotypes Infantis, Senftenberg, and Alachua were tested, with and without the pESI plasmid carriage. Isolates of 31 additional serotypes were also screened to confirm specificity to Infantis. Specificity, sensitivity, and precision of each primer were >0.95. All isolates tested produced the expected band sizes. This PCR protocol provides a rapid and clear result for the detection of the pESI plasmid and serotype Infantis and will allow for the in vitro detection for epidemiological studies where whole-genome sequencing is not available.


Assuntos
Salmonella enterica , Salmonella , Animais , Humanos , Plasmídeos/genética , Reação em Cadeia da Polimerase , Surtos de Doenças
5.
Front Microbiol ; 14: 1160244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234542

RESUMO

The similarity of the Listeria innocua genome with Listeria monocytogenes and their presence in the same niche may facilitate gene transfer between them. A better understanding of the mechanisms responsible for bacterial virulence requires an in-depth knowledge of the genetic characteristics of these bacteria. In this context, draft whole genome sequences were completed on five L. innocua isolated from milk and dairy products in Egypt. The assembled sequences were screened for antimicrobial resistance and virulence genes, plasmid replicons and multilocus sequence types (MLST); phylogenetic analysis of the sequenced isolates was also performed. The sequencing results revealed the presence of only one antimicrobial resistance gene, fosX, in the L. innocua isolates. However, the five isolates carried 13 virulence genes involved in adhesion, invasion, surface protein anchoring, peptidoglycan degradation, intracellular survival, and heat stress; all five lacked the Listeria Pathogenicity Island 1 (LIPI-1) genes. MLST assigned these five isolates into the same sequence type (ST), ST-1085; however, single nucleotide polymorphism (SNP)-based phylogenetic analysis revealed 422-1,091 SNP differences between our isolates and global lineages of L. innocua. The five isolates possessed an ATP-dependent protease (clpL) gene, which mediates heat resistance, on a rep25 type plasmids. Blast analysis of clpL-carrying plasmid contigs showed approximately 99% sequence similarity to the corresponding parts of plasmids of L. monocytogenes strains 2015TE24968 and N1-011A previously isolated from Italy and the United States, respectively. Although this plasmid has been linked to L. monocytogenes that was responsible for a serious outbreak, this is the first report of L. innocua containing clpL-carrying plasmids. Various genetic mechanisms of virulence transfer among Listeria species and other genera could raise the possibility of the evolution of virulent strains of L. innocua. Such strains could challenge processing and preservation protocols and pose health risks from dairy products. Ongoing genomic research is necessary to identify these alarming genetic changes and develop preventive and control measures.

6.
Microorganisms ; 10(6)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35744761

RESUMO

The presence and transfer of plasmids from commensal bacteria to more pathogenic bacteria may contribute to the dissemination of antimicrobial resistance. However, the prevalence of plasmids from commensal bacteria, such as the enterococci, in food animals remains largely unknown. In this study, the diversity and prevalence of plasmid families from multidrug-resistant (MDR; resistance to three or more antimicrobials) enterococci from poultry carcasses were determined. Plasmid-positive MDR enterococci were also tested for the ability to transfer plasmids to other enterococci using conjugation. MDR Enterococcus faecalis (n = 98) and Enterococcus faecium (n = 696) that were isolated from poultry carcass rinsates between 2004 and 2011 were tested for the presence of 21 plasmid replicon (rep) families using multiplex PCR. Approximately 48% of E. faecalis (47/98) and 16% of E. faecium (110/696) were positive for at least one rep-family. Fourteen rep-families were detected overall, and ten rep-families were shared between E. faecalis and E. faecium. The rep7 and rep17 families were unique to E. faecalis, while the rep5 and rep8 families were unique to E. faecium. The rep9 family was predominant in both E. faecalis and E. faecium for all the years tested. The greatest number of rep-families detected was in 2005 (n = 10), and the least was in 2009 (n = 1). Eight rep-families were transferred from E. faecalis donors to the E. faecalis JH2-2 recipient using conjugation. Results from this study showed that E. faecalis and E. faecium from poultry carcasses contain numerous and diverse rep-families that are capable of conjugal transfer.

7.
Antibiotics (Basel) ; 11(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35740187

RESUMO

The emergence of antimicrobial-resistant bacteria in developing countries increases risks to the health of both such countries' residents and the global community due to international travel. It is consequently necessary to investigate antimicrobial-resistant pathogens in countries such as Burkina Faso, where surveillance data are not available. To study the epidemiology of antibiotic resistance in Salmonella, 102 Salmonella strains isolated from slaughtered chickens were subjected to whole-genome sequencing (WGS) to obtain information on antimicrobial resistance (AMR) genes and other genetic factors. Twenty-two different serotypes were identified using WGS, the most prevalent of which were Hato (28/102, 27.5%) and Derby (23/102, 22.5%). All strains analyzed possessed at least one and up to nine AMR genes, with the most prevalent being the non-functional aac(6')-Iaa gene, followed by aph(6)-Id. Multi-drug resistance was found genotypically in 36.2% of the isolates for different classes of antibiotics, such as fosfomycin and ß-lactams, among others. Plasmids were identified in 43.1% of isolates (44/102), and 25 plasmids were confirmed to carry AMR genes. The results show that chicken can be considered as a reservoir of antibiotic-resistant Salmonella strains. Due to the prevalence of these drug-resistant pathogens and the potential for foodborne illnesses, poultry processing and cooking should be performed with attention to prescribed safe handling methods to avoid cross-contamination with chicken products.

8.
Appl Environ Microbiol ; 88(10): e0039322, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35532233

RESUMO

As the cases of Salmonella enterica infections associated with contaminated water are increasing, this study was conducted to address the role of surface water as a reservoir of S. enterica serotypes. We sampled rivers and streams (n = 688) over a 3-year period (2015 to 2017) in a mixed-use watershed in Georgia, USA, and 70.2% of the total stream samples tested positive for Salmonella. A total of 1,190 isolates were recovered and characterized by serotyping, antimicrobial susceptibility testing, and pulsed-field gel electrophoresis (PFGE). A wide range of serotypes was identified, including those commonly associated with humans and animals, with S. enterica serotype Muenchen being predominant (22.7%) and each serotype exhibiting a high degree of strain diversity by PFGE. About half (46.1%) of the isolates had PFGE patterns indistinguishable from those of human clinical isolates in the CDC PulseNet database. A total of 52 isolates (4.4%) were resistant to antimicrobials, out of which 43 isolates were multidrug resistant (MDR; resistance to two or more classes of antimicrobials). These 52 resistant Salmonella isolates were screened for the presence of antimicrobial resistance genes, plasmid replicons, and class 1 integrons, out of which four representative MDR isolates were selected for whole-genome sequencing analysis. The results showed that 28 MDR isolates resistant to 10 antimicrobials had blacmy-2 on an A/C plasmid. Persistent contamination of surface water with a high diversity of Salmonella strains, some of which are drug resistant and genetically indistinguishable from human isolates, supports a role of environmental surface water as a reservoir for and transmission route of this pathogen. IMPORTANCE Salmonella has been traditionally considered a foodborne pathogen, as it is one of the most common etiologies of foodborne illnesses worldwide; however, recent Salmonella outbreaks attributed to fresh produce and water suggest a potential environmental source of Salmonella that causes some human illnesses. Here, we investigated the prevalence, diversity, and antimicrobial resistance of Salmonella isolated from a mixed-use watershed in Georgia, USA, in order to enhance the overall understanding of waterborne Salmonella. The persistence and widespread distribution of Salmonella in surface water confirm environmental sources of the pathogen. A high proportion of waterborne Salmonella with clinically significant serotypes and genetic similarity to strains of human origin supports the role of environmental water as a significant reservoir of Salmonella and indicates a potential waterborne transmission of Salmonella to humans. The presence of antimicrobial-resistant and MDR Salmonella demonstrates additional risks associated with exposure to contaminated environmental water.


Assuntos
Infecções por Salmonella , Salmonella enterica , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla/genética , Eletroforese em Gel de Campo Pulsado , Georgia , Humanos , Testes de Sensibilidade Microbiana , Salmonella , Sorogrupo , Sorotipagem , Água
9.
Microorganisms ; 9(11)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34835331

RESUMO

Salmonella enterica and Escherichia coli are important human pathogens that frequently contain plasmids, both large and small, carrying antibiotic resistance genes. Large conjugative plasmids are known to mobilize small Col plasmids, but less is known about the specificity of mobilization. In the current study, six S. enterica and four E. coli strains containing large plasmids were tested for their ability to mobilize three different kanamycin resistance Col plasmids (KanR plasmids). Large conjugative plasmids from five isolates, four S. enterica and one E. coli, were able to mobilize KanR plasmids of various types. Plasmids capable of mobilizing the KanR plasmids were either IncI1 or IncX, while IncI1 and IncX plasmids with no evidence of conjugation had disrupted transfer regions. Conjugative plasmids of similar types mobilized similar KanR plasmids, but not all conjugative plasmid types were capable of mobilizing all of the KanR plasmids. These data describe some of the complexities and specificities of individual small plasmid mobilization.

10.
Front Cell Infect Microbiol ; 11: 681588, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34327151

RESUMO

In this study, multidrug-resistant (MDR) Escherichia coli isolates from retail food and humans assigned into similar Multilocus Sequence Types (MLST) were analyzed using whole genome sequencing (WGS). In silico analysis of assembled sequences revealed the existence of multiple resistance genes among the examined E. coli isolates. Of the six CTX-M-producing isolates from retail food, blaCTX-M-14 was the prevalent variant identified (83.3%, 5/6). Two plasmid-mediated fosfomycin resistance genes, fosA3, and fosA4, were detected from retail food isolates (one each from chicken and beef), where fosA4 was identified in the chicken isolate 82CH that also carried the colistin resistance gene mcr-1. The blaCTX-M-14 and fosA genes in retail food isolates were located adjacent to insertion sequences ISEcp1 and IS26, respectively. Sequence analysis of the reconstructed mcr-1 plasmid (p82CH) showed 96-97% identity to mcr-1-carrying IncI2 plasmids previously identified in human and food E. coli isolates from Egypt. Hierarchical clustering of core genome MLST (HierCC) revealed clustering of chicken isolate 82CH, co-harboring mcr-1 and fosA4 genes, with a chicken E. coli isolate from China at the HC200 level (≤200 core genome allelic differences). As E. coli co-harboring mcr-1 and fosA4 genes has only been recently reported, this study shows rapid spread of this genotype that shares similar genetic structures with regional and international E. coli lineages originating from both humans and food animals. Adopting WGS-based surveillance system is warranted to facilitate monitoring the international spread of MDR pathogens.


Assuntos
Escherichia coli , Contaminação de Alimentos , Carne/microbiologia , Animais , Antibacterianos/farmacologia , Galinhas , China , Farmacorresistência Bacteriana Múltipla , Egito , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/genética , Humanos , Tipagem de Sequências Multilocus , Plasmídeos/genética , beta-Lactamases/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-33820767

RESUMO

The plasmid-mediated tet(X7) conferring high-level tigecycline resistance was identified in five mcr-1.1-positive Escherichia coli strains (ST10 [n = 3] and ST155 [n = 2]) isolated from chickens in Egypt. Two fosfomycin-resistant fosA4-carrying IncFII plasmids (∼79 kb in size) were detected. Transposase ISCR3 (IS91 family) is syntenic with tet(X7) in all isolates, suggesting its role in the mobilization of tet(X7). To our knowledge, this is the first global report of ST4-IncHI2 plasmids cocarrying tet(X7) and mcr-1.1 from chickens.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Fosfomicina , Animais , Antibacterianos/farmacologia , Galinhas , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Egito , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fosfomicina/farmacologia , Plasmídeos/genética , Tigeciclina
12.
BMC Microbiol ; 21(1): 29, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468047

RESUMO

BACKGROUND: Salmonella enterica remains a leading cause of food-borne diseases worldwide. Serotype information is important in food safety and public health activities to reduce the burden of salmonellosis. In the current study, two methods were used to determine serotypes of 111 strains of Salmonella isolated from poultry feces in Burkina Faso. First, Salmonella Multiplex Assay for Rapid Typing (SMART) Polymerase Chain Reaction (PCR) was used to determine the serovars of the S. enterica isolates. Second, serovar prediction based on whole genome sequencing (WGS) data was performed using SeqSero 2.0. RESULTS: Among the 111 Salmonella isolates, serotypes for 17 (15.31%) isolates were identified based on comparison to a panel of representative SMART codes previously determined for the 50 most common serovars in the United States. Forty-four (44) new SMART codes were developed for common and uncommon serotypes. A total of 105 (94.59%) isolates were serotyped using SeqSero 2.0 for serovar prediction based on WGS data. CONCLUSION: We determined that SeqSero 2.0 was more comprehensive for identifying Salmonella serotypes from Burkina Faso than SMART PCR.


Assuntos
Aves Domésticas/microbiologia , Salmonella/classificação , Salmonella/genética , Sorotipagem/métodos , Animais , Burkina Faso , Eletroforese Capilar , Fezes/microbiologia , Microbiologia de Alimentos , Reação em Cadeia da Polimerase Multiplex , Filogenia , Salmonella/isolamento & purificação , Sequenciamento Completo do Genoma
13.
J Microbiol Methods ; 178: 106082, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33039542

RESUMO

CHROMagar Enterococcus (CHR), a new chromogenic medium not yet available for commercial purchase, was evaluated for the isolation of Enterococcus from environmental water samples. Its performance was evaluated in comparison to commercially available media, Enterococcosel agar and m-Enterococcus agar. Three consecutive tests were conducted with each test being performed with a newer batch of the CHR medium with improved media composition per batch. The recovery rate, positive predictive value, and sensitivity of the CHR medium improved with the subsequent re-formulation of the media components from 93.9%, 63%, and 92.6%, respectively, with the first batch of CHR, to 96.2%, 97.4%, and 95.7%, respectively, with the newest batch of CHR. The results showed that the newer batches of CHR performed better than the previous versions and are comparable to the other two commercial media tested. The CHR medium has been developed to decrease the turnaround time to approximately 18 h and be read more easily due to bigger colony morphology. The superior growth of colonies on CHR compared with other media in a shorter period of time can aid in the early detection of enterococci and may offer a user-friendly alternative to other media for the isolation of enterococci.

14.
J Glob Antimicrob Resist ; 22: 832-834, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32738341

RESUMO

OBJECTIVES: This study describes the first draft genome sequence of a multidrug-resistant (MDR) Escherichia coli D-ST69 clinical isolate from Egypt carrying blaNDM-1 and blaOXA-244. METHODS: The strain was isolated in December 2014 from a wound pus swab of a male patient in the city of Kafr El-Sheikh using MacConkey agar containing 2 µg/mL meropenem. The strain was subjected to antimicrobial susceptibility testing, conjugation experiments, and whole-genome sequencing using an Illumina MiSeq platform. RESULTS: The draft genome of the strain (HR14_AS) was 5.08 Mbp in size containing a total of 90 contigs encoding 4677 predicted genes with an average G+C content of 50.7%. Strain HR14_AS belongs to sequence type 69 (ST69), phylogroup D and exhibits an MDR phenotype, with minimum inhibitory concentrations (MICs) of 64 µg/mL and 32 µg/mL for meropenem and doripenem, respectively. Multiple acquired antimicrobial resistance genes conferring resistance to macrolides [mdf(A)], fluoroquinolones [aac(6')-Ib-cr], quinolones (qnrS1), trimethoprim (dfrA14), ß-lactams (blaNDM-1, blaOXA-244, blaCTX-M-15, blaOXA-9 and blaTEM-1B) and aminoglycosides [aac(3)-IId, aac(6')-Ib, aadA1 and aph(3')-VI] were detected. The blaOXA-244 and blaNDM-1 genes were located on the chromosome (Tn6237) and on an IncI1-type self-conjugative plasmid of >93 kb in size, respectively. CONCLUSIONS: Here we report the first draft genome sequence of a MDR E. coli D-ST69 isolate carrying blaNDM-1 and blaOXA-244. Besides clonal expansion of the E. coli ST38 pandemic clone, this study further identified that the spread of OXA-244-producing E. coli could be related to mobilisation of the IS1R-made composite transposon (Tn6237) carrying blaOXA-244.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Farmacorresistência Bacteriana Múltipla/genética , Egito , Escherichia coli/genética , Humanos , Masculino , beta-Lactamases
15.
Foods ; 9(6)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466367

RESUMO

Enterococcus cecorum is an emerging avian pathogen, particularly in chickens, but can be found in both diseased (clinical) and healthy (non-clinical) poultry. To better define differences between E. cecorum from the two groups, whole-genome sequencing (WGS) was used to identify and compare antimicrobial resistance genes as well as the pan-genome among the isolates. Eighteen strains selected from our previous study were subjected to WGS using Illumina MiSeq and comparatively analyzed. Assembled contigs were analyzed for resistance genes using ARG-ANNOT. Resistance to erythromycin was mediated by ermB, ermG, and mefA, in clinical isolates and ermB and mefA, in non-clinical isolates. Lincomycin resistance genes were identified as linB, lnuB, lnuC, and lnuD with lnuD found only in non-clinical E. cecorum; however, lnuB and linB were found in only one clinical isolate. For both groups of isolates, kanamycin resistance was mediated by aph3-III, while tetracycline resistance was conferred by tetM, tetO, and tetL. No mutations or known resistance genes were found for isolates resistant to either linezolid or chloramphenicol, suggesting possible new mechanisms of resistance to these drugs. A comparison of WGS results confirmed that non-clinical isolates contained more resistance genes than clinical isolates. The pan-genome of clinical and non-clinical isolates resulted in 3651 and 4950 gene families, respectively, whereas the core gene sets were comprised of 1559 and 1534 gene families in clinical and non-clinical isolates, respectively. Unique genes were found more frequently in non-clinical isolates than clinical. Phylogenetic analysis of the isolates and all the available complete and draft genomes showed no correlation between healthy and diseased poultry. Additional genomic comparison is required to elucidate genetic factors in E. cecorum that contribute to disease in poultry.

16.
Pathogens ; 9(5)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397188

RESUMO

Contamination of retail foods with foodborne pathogens, particularly the antimicrobial resistant ones, poses a persistent threat to human health. There is a dearth of information about the overlapping Escherichia coli (E. coli) lineages circulating among retail foods and humans in Egypt. This study aimed to determine the clonal diversity of 120 E. coli isolates from diarrheic patients (n = 32), retail chicken carcasses (n = 61) and ground beef (n = 27) from Mansoura, Egypt using pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Simpson's index of diversity was calculated to compare the results of both typing methods. Antimicrobial resistance phenotypes, genotypes and phylogrouping of the isolates were also determined. Higher frequencies of antimicrobial resistance were found among chicken isolates compared to beef and human isolates; regardless of isolate source, the predominant antimicrobial resistances were found against ampicillin (87/120, 72.5%), tetracycline and sulfisoxazole (82/120, 68.3%, each), and streptomycin (79/120, 65.8%). None of the isolates displayed resistance to meropenem. The prevalent genes detected were tetA (64.2%), blaTEM (62.5%), sul1 (56.7%), floR (53.3%), sul2 (50%), strB (48.3%) and strA (47.5%) corresponding with resistance phenotypes. Alarmingly, blaCTX was detected in 63.9% (39/61) of chicken isolates. The majority of E. coli isolates from humans (90.6%), beef (81.5%) and chicken (70.5%) belonged to commensal phylogroups (A, B1, C). Using PFGE analysis, 16 out of 24 clusters (66.7%) contained isolates from different sources at a similarity level ≥75%. MLST results assigned E. coli isolates into 25, 19 and 13 sequence types (STs) from chicken, human and beef isolates, respectively. Six shared STs were identified including ST1011, ST156, ST48, ST224 (chicken and beef), ST10 (human and chicken) and ST226 (human and beef). Simpson's index of diversity was higher for MLST (0.98) than PFGE (0.94). In conclusion, the existence of common genetic determinants among isolates from retail foods and humans in Egypt as well as the circulation of shared STs indicates a possible epidemiological link with potential zoonotic hazards.

17.
Microbiol Resour Announc ; 9(17)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327517

RESUMO

Escherichia coli sequence type 131 (ST131) has recently emerged as a leading multidrug-resistant pathogen that causes urinary tract and bloodstream infections in humans. Here, we report the draft genomic sequences of three E. coli ST131 isolates, H45, H43ii, and H43iii, from urine samples of patients in Lagos, Nigeria.

18.
Foodborne Pathog Dis ; 17(1): 1-7, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31509034

RESUMO

Escherichia coli is one of the most common commensal bacteria of the gastrointestinal tract of humans and warm-blooded animals. Contaminated poultry can lead to disease outbreaks in consumers causing massive economic losses in the poultry industry. Additionally, commensal E. coli can harbor antibiotic resistance genes that can be transferred to other bacteria, including pathogens, in a colonized human host. In a previous study on antimicrobial resistance of E. coli from food animals from Nigeria, multidrug-resistant E. coli were detected. Three of those isolates were selected for further study using whole-genome sequencing due to the extensive drug resistance exhibited. All of the isolates carried the extended-spectrum ß-lactamase (ESBL) genes, blaCTX-M15 and blaTEM-1, whereas one isolate harbored an additional ESBL, blaOXA-1. All of the tetracycline-resistant isolates carried tet(A). The genes aac3-IIa and aacA4, conferring resistance to aminoglycosides, were identified in an E. coli isolate resistant to gentamicin and tobramycin. In two E. coli isolates, dfrA14, qnrS1, and sulII, were detected conferring resistance to trimethoprim, fluoroquinolones, and sulfonamides, respectively. The third isolate carried dfrA17, no fluoroquinolone resistance gene, an additional sulI gene, and a chloramphenicol resistance gene, catB3. Mutations in candidate genes conferring resistance to fosfomycin and fluoroquinolones were also detected. Several efflux systems were detected in all the E. coli isolates and virulence-associated genes related to serum resistance, motility, and adhesion. E. coli and non-E. coli origin prophages were also identified in the isolates. The results underline the higher resolution power of whole-genome sequencing for investigation of antimicrobial resistance, virulence, and phage in E. coli.


Assuntos
Galinhas , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/veterinária , Escherichia coli/genética , Doenças das Aves Domésticas/microbiologia , Animais , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Genoma Bacteriano , Nigéria/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Sequenciamento Completo do Genoma/veterinária
19.
Zoonoses Public Health ; 67(3): 324-329, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31867850

RESUMO

The emergence of NDM-producing Escherichia coli has considerably threatened human and animal health worldwide. This study describes for the first time in Egypt, the draft genome sequences of emerging NDM-5-producing E. coli from humans and dogs, and investigates genetic relatedness between isolates from both sources. Two E. coli from human urine and seven from environmental clinical samples of dogs exhibited resistance to carbapenems and harbouring blaNDM were subjected to Illumina Miseq whole-genome sequencing (WGS). Assembly and analysis of the reads were performed to identify resistance genes, multilocus sequence types (MLST), plasmid replicon types (Inc) and insertion sequences (IS) of the blaNDM region; core genome MLST (cgMLST) analysis was also performed. Two different NDM alleles were identified; blaNDM-5 in E. coli HR119 from the urine of a healthy person and environmental samples of dogs, and blaNDM-1 in E. coli HR135 from a human patient's urine. Multiple mobilizable resistance genes to different antimicrobial classes were identified except the colistin resistance gene, mcr. E. coli isolates from humans and dogs were assigned to different sequence types (STs). Using cgMLST, dog isolates clustered together with only 1-2 allellic differences; however, human E. coli showed 1,978 different allelles compared with dog isolates. Plasmidfinder results indicated the presence of an IncX3 replicon in blaNDM-5 -producing E. coli; however, blaNDM-1 was linked to IncCoIKP3. Notably, the NDM region (3 Kb) in all isolates from humans and dogs was highly similar with variable flanking sequences that represented different IS elements. This study reports the first emergence of NDM-5-producing E. coli from dogs in Egypt that shared some genetic features with human isolates and could be considered potential public health threats.


Assuntos
Infecções por Escherichia coli/veterinária , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , beta-Lactamases/metabolismo , Animais , Antibacterianos/farmacologia , Cães , Farmacorresistência Bacteriana , Egito/epidemiologia , Escherichia coli/enzimologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Humanos , Zoonoses , beta-Lactamases/genética
20.
PLoS One ; 14(11): e0224518, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31675365

RESUMO

Food animals act as a reservoir for many foodborne pathogens. Salmonella enterica is one of the leading pathogens that cause food borne illness in a broad host range including animals and humans. They can also be associated with a single host species or a subset of hosts, due to genetic factors associated with colonization and infection. Adult swine are often asymptomatic carriers of a broad range of Salmonella servoars and can act as an important reservoir of infections for humans. In order to understand the genetic variations among different Salmonella serovars, Whole Genome Sequences (WGS) of fourteen Salmonella serovars from swine products were analyzed. More than 75% of the genes were part of the core genome in each isolate and the higher fraction of gene assign to different functional categories in dispensable genes indicated that these genes acquired for better adaptability and diversity. High concordance (97%) was detected between phenotypically confirmed antibiotic resistances and identified antibiotic resistance genes from WGS. The resistance determinants were mainly located on mobile genetic elements (MGE) on plasmids or integrated into the chromosome. Most of known and putative virulence genes were part of the core genome, but a small fraction were detected on MGE. Predicted integrated phage were highly diverse and many harbored virulence, metal resistance, or antibiotic resistance genes. CRISPR (Clustered regularly interspaced short palindromic repeats) patterns revealed the common ancestry or infection history among Salmonella serovars. Overall genomic analysis revealed a great deal of diversity among Salmonella serovars due to acquired genes that enable them to thrive and survive during infection.


Assuntos
Salmonelose Animal/microbiologia , Salmonella/genética , Doenças dos Suínos/microbiologia , Suínos/microbiologia , Animais , Reservatórios de Doenças/microbiologia , Farmacorresistência Bacteriana/genética , Genes Bacterianos/genética , Testes de Sensibilidade Microbiana/veterinária , Salmonella/efeitos dos fármacos , Sequenciamento Completo do Genoma/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA