Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Jpn J Radiol ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491333

RESUMO

OBJECTIVES: To investigate the usefulness of machine learning (ML) models using pretreatment 18F-FDG-PET-based radiomic features for predicting adverse clinical events (ACEs) in patients with cardiac sarcoidosis (CS). MATERIALS AND METHODS: This retrospective study included 47 patients with CS who underwent 18F-FDG-PET/CT scan before treatment. The lesions were assigned to the training (n = 38) and testing (n = 9) cohorts. In total, 49 18F-FDG-PET-based radiomic features and the visibility of right ventricle 18F-FDG uptake were used to predict ACEs using seven different ML algorithms (namely, decision tree, random forest [RF], neural network, k-nearest neighbors, Naïve Bayes, logistic regression, and support vector machine [SVM]) with tenfold cross-validation and the synthetic minority over-sampling technique. The ML models were constructed using the top four features ranked by the decrease in Gini impurity. The AUCs and accuracies were used to compare predictive performances. RESULTS: Patients who developed ACEs presented with a significantly higher surface area and gray level run length matrix run length non-uniformity (GLRLM_RLNU), and lower neighborhood gray-tone difference matrix_coarseness and sphericity than those without ACEs (each, p < 0.05). In the training cohort, all seven ML algorithms had a good classification performance with AUC values of > 0.80 (range: 0.841-0.944). In the testing cohort, the RF algorithm had the highest AUC and accuracy (88.9% [8/9]) with a similar classification performance between training and testing cohorts (AUC: 0.945 vs 0.889). GLRLM_RLNU was the most important feature of the modeling process of this RF algorithm. CONCLUSION: ML analyses using 18F-FDG-PET-based radiomic features may be useful for predicting ACEs in patients with CS.

3.
Br J Radiol ; 96(1149): 20220772, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37393538

RESUMO

OBJECTIVE: To examine whether machine learning (ML) analyses involving clinical and 18F-FDG-PET-based radiomic features are helpful in predicting prognosis in patients with laryngeal cancer. METHODS: This retrospective study included 49 patients with laryngeal cancer who underwent18F-FDG-PET/CT before treatment, and these patients were divided into the training (n = 34) and testing (n = 15) cohorts.Seven clinical (age, sex, tumor size, T stage, N stage, Union for International Cancer Control stage, and treatment) and 40 18F-FDG-PET-based radiomic features were used to predict disease progression and survival. Six ML algorithms (random forest, neural network, k-nearest neighbors, naïve Bayes, logistic regression, and support vector machine) were used for predicting disease progression. Two ML algorithms (cox proportional hazard and random survival forest [RSF] model) considering for time-to-event outcomes were used to assess progression-free survival (PFS), and prediction performance was assessed by the concordance index (C-index). RESULTS: Tumor size, T stage, N stage, GLZLM_ZLNU, and GLCM_Entropy were the five most important features for predicting disease progression.In both cohorts, the naïve Bayes model constructed by these five features was the best performing classifier (training: AUC = 0.805; testing: AUC = 0.842). The RSF model using the five features (tumor size, GLZLM_ZLNU, GLCM_Entropy, GLRLM_LRHGE and GLRLM_SRHGE) exhibited the highest performance in predicting PFS (training: C-index = 0.840; testing: C-index = 0.808). CONCLUSION: ML analyses involving clinical and 18F-FDG-PET-based radiomic features may help predict disease progression and survival in patients with laryngeal cancer. ADVANCES IN KNOWLEDGE: ML approach using clinical and 18F-FDG-PET-based radiomic features has the potential to predict prognosis of laryngeal cancer.


Assuntos
Fluordesoxiglucose F18 , Neoplasias Laríngeas , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Retrospectivos , Neoplasias Laríngeas/diagnóstico por imagem , Teorema de Bayes , Prognóstico , Progressão da Doença , Aprendizado de Máquina
4.
Mol Imaging Biol ; 25(5): 923-934, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37193804

RESUMO

PURPOSE: To develop and identify machine learning (ML) models using pretreatment clinical and 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography ([18F]-FDG-PET)-based radiomic characteristics to predict disease recurrences in patients with breast cancers who underwent surgery. PROCEDURES: This retrospective study included 112 patients with 118 breast cancer lesions who underwent [18F]-FDG-PET/ X-ray computed tomography (CT) preoperatively, and these lesions were assigned to training (n=95) and testing (n=23) cohorts. A total of 12 clinical and 40 [18F]-FDG-PET-based radiomic characteristics were used to predict recurrences using 7 different ML algorithms, namely, decision tree, random forest (RF), neural network, k-nearest neighbors, naive Bayes, logistic regression, and support vector machine (SVM) with a 10-fold cross-validation and synthetic minority over-sampling technique. Three different ML models were created using clinical characteristics (clinical ML models), radiomic characteristics (radiomic ML models), and both clinical and radiomic characteristics (combined ML models). Each ML model was constructed using the top ten characteristics ranked by the decrease in Gini impurity. The areas under ROC curves (AUCs) and accuracies were used to compare predictive performances. RESULTS: In training cohorts, all 7 ML algorithms except for logistic regression algorithm in the radiomics ML model (AUC = 0.760) achieved AUC values of >0.80 for predicting recurrences with clinical (range, 0.892-0.999), radiomic (range, 0.809-0.984), and combined (range, 0.897-0.999) ML models. In testing cohorts, the RF algorithm of combined ML model achieved the highest AUC and accuracy (95.7% (22/23)) with similar classification performance between training and testing cohorts (AUC: training cohort, 0.999; testing cohort, 0.992). The important characteristics for modeling process of this RF algorithm were radiomic GLZLM_ZLNU and AJCC stage. CONCLUSIONS: ML analyses using both clinical and [18F]-FDG-PET-based radiomic characteristics may be useful for predicting recurrence in patients with breast cancers who underwent surgery.

5.
J Xray Sci Technol ; 31(3): 627-640, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37038802

RESUMO

BACKGROUND: In breast cancer diagnosis and treatment, non-invasive prediction of axillary lymph node (ALN) metastasis can help avoid complications related to sentinel lymph node biopsy. OBJECTIVE: This study aims to develop and evaluate machine learning models using radiomics features extracted from diffusion-weighted whole-body imaging with background signal suppression (DWIBS) examination for predicting the ALN status. METHODS: A total of 100 patients with histologically proven, invasive, clinically N0 breast cancer who underwent DWIBS examination consisting of short tau inversion recovery (STIR) and DWIBS sequences before surgery were enrolled. Radiomic features were calculated using segmented primary lesions in DWIBS and STIR sequences and were divided into training (n = 75) and test (n = 25) datasets based on the examination date. Using the training dataset, optimal feature selection was performed using the least absolute shrinkage and selection operator algorithm, and the logistic regression model and support vector machine (SVM) classifier model were constructed with DWIBS, STIR, or a combination of DWIBS and STIR sequences to predict ALN status. Receiver operating characteristic curves were used to assess the prediction performance of radiomics models. RESULTS: For the test dataset, the logistic regression model using DWIBS, STIR, and a combination of both sequences yielded an area under the curve (AUC) of 0.765 (95% confidence interval: 0.548-0.982), 0.801 (0.597-1.000), and 0.779 (0.567-0.992), respectively, whereas the SVM classifier model using DWIBS, STIR, and a combination of both sequences yielded an AUC of 0.765 (0.548-0.982), 0.757 (0.538-0.977), and 0.779 (0.567-0.992), respectively. CONCLUSIONS: Use of machine learning models incorporating with the quantitative radiomic features derived from the DWIBS and STIR sequences can potentially predict ALN status.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Imagem Corporal Total , Estudos Retrospectivos , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Metástase Linfática/diagnóstico por imagem , Metástase Linfática/patologia
6.
Mol Imaging Biol ; 25(2): 303-313, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35864282

RESUMO

PURPOSE: To examine whether the machine learning (ML) analyses using clinical and pretreatment 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography ([18F]-FDG-PET)-based radiomic features were useful for predicting prognosis in patients with hypopharyngeal cancer. PROCEDURES: This retrospective study included 100 patients with hypopharyngeal cancer who underwent [18F]-FDG-PET/X-ray computed tomography (CT) before treatment, and these patients were allocated to the training (n=80) and validation (n=20) cohorts. Eight clinical (age, sex, histology, T stage, N stage, M stage, UICC stage, and treatment) and 40 [18F]-FDG-PET-based radiomic features were used to predict disease progression. A feature reduction procedure based on the decrease of the Gini impurity was applied. Six ML algorithms (random forest, neural network, k-nearest neighbors, naïve Bayes, logistic regression, and support vector machine) were compared using the area under the receiver operating characteristic curve (AUC). Progression-free survival (PFS) was assessed using Cox regression analysis. RESULTS: The five most important features for predicting disease progression were UICC stage, N stage, gray level co-occurrence matrix entropy (GLCM_Entropy), gray level run length matrix run length non-uniformity (GLRLM_RLNU), and T stage. Patients who experienced disease progression displayed significantly higher UICC stage, N stage, GLCM_Entropy, GLRLM_RLNU, and T stage than those without progression (each, p<0.001). In both cohorts, the logistic regression model constructed by these 5 features was the best performing classifier (training: AUC=0.860, accuracy=0.800; validation: AUC=0.803, accuracy=0.700). In the logistic regression model, 5-year PFS was significantly higher in patients with predicted non-progression than those with predicted progression (75.8% vs. 8.3%, p<0.001), and this model was only the independent factor for PFS in multivariate analysis (hazard ratio = 3.22; 95% confidence interval = 1.03-10.11; p=0.045). CONCLUSIONS: The logistic regression model constructed by UICC, T and N stages and pretreatment [18F]-FDG-PET-based radiomic features, GLCM_Entropy, and GLRLM_RLNU may be the most important predictor of prognosis in patients with hypopharyngeal cancer.


Assuntos
Fluordesoxiglucose F18 , Neoplasias Hipofaríngeas , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Estudos Retrospectivos , Teorema de Bayes , Tomografia Computadorizada por Raios X , Aprendizado de Máquina , Progressão da Doença
7.
Eur Radiol ; 32(8): 5353-5361, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35201406

RESUMO

OBJECTIVES: This preliminary study aimed to develop a deep learning (DL) model using diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) maps to predict local recurrence and 2-year progression-free survival (PFS) in laryngeal and hypopharyngeal cancer patients treated with various forms of radiotherapy-related curative therapy. METHODS: Seventy patients with laryngeal and hypopharyngeal cancers treated by radiotherapy, chemoradiotherapy, or induction-(chemo)radiotherapy were enrolled and divided into training (N = 49) and test (N = 21) groups based on presentation timeline. All patients underwent MR before and 4 weeks after the start of radiotherapy. The DL models that extracted imaging features on pre- and intra-treatment DWI and ADC maps were trained to predict the local recurrence within a 2-year follow-up. In the test group, each DL model was analyzed for recurrence prediction. Additionally, the Kaplan-Meier and multivariable Cox regression analyses were performed to evaluate the prognostic significance of the DL models and clinical variables. RESULTS: The highest area under the receiver operating characteristics curve and accuracy for predicting the local recurrence in the DL model were 0.767 and 81.0%, respectively, using intra-treatment DWI (DWIintra). The log-rank test showed that DWIintra was significantly associated with PFS (p = 0.013). DWIintra was an independent prognostic factor for PFS in multivariate analysis (p = 0.023). CONCLUSION: DL models using DWIintra may have prognostic value in patients with laryngeal and hypopharyngeal cancers treated by curative radiotherapy. The model-related findings may contribute to determining the therapeutic strategy in the early stage of the treatment. KEY POINTS: • Deep learning models using intra-treatment diffusion-weighted imaging have prognostic value in patients with laryngeal and hypopharyngeal cancers treated by curative radiotherapy. • The findings from these models may contribute to determining the therapeutic strategy at the early stage of the treatment.


Assuntos
Aprendizado Profundo , Neoplasias Hipofaríngeas , Quimiorradioterapia/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Neoplasias Hipofaríngeas/diagnóstico por imagem , Neoplasias Hipofaríngeas/radioterapia , Recidiva Local de Neoplasia/terapia , Prognóstico , Estudos Retrospectivos
8.
Abdom Radiol (NY) ; 47(2): 838-847, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34821963

RESUMO

PURPOSE: To examine the usefulness of machine learning to predict prognosis in cervical cancer using clinical and radiomic features of 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) positron emission tomography/computed tomography (CT) (18F-FDG-PET/CT). METHODS: This retrospective study included 50 cervical cancer patients who underwent 18F-FDG-PET/CT before treatment. Four clinical (age, histology, stage, and treatment) and 41 18F-FDG-PET-based radiomic features were ranked and a subset of useful features for association with disease progression was selected based on decrease of the Gini impurity. Six machine learning algorithms (random forest, neural network, k-nearest neighbors, naive Bayes, logistic regression, and support vector machine) were compared using the areas under the receiver operating characteristic curve (AUC). Progression-free survival (PFS) was assessed using Cox regression analysis. RESULTS: The five top predictors of disease progression were: stage, surface area, metabolic tumor volume, gray-level run length non-uniformity (GLRLM_RLNU), and gray-level non-uniformity for run (GLRLM_GLNU). The naive Bayes model was the best-performing classifier for predicting disease progression (AUC = 0.872, accuracy = 0.780, F1 score = 0.781, precision = 0.788, and recall = 0.780). In the naive Bayes model, 5-year PFS was significantly higher in predicted non-progression than predicted progression (80.1% vs. 9.1%, p < 0.001) and was only the independent factor for PFS in multivariate analysis (HR, 6.89; 95% CI, 1.92-24.69; p = 0.003). CONCLUSION: A machine learning approach based on clinical and pretreatment 18F-FDG PET-based radiomic features may be useful for predicting tumor progression in cervical cancer patients.


Assuntos
Fluordesoxiglucose F18 , Neoplasias do Colo do Útero , Teorema de Bayes , Feminino , Humanos , Aprendizado de Máquina , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Prognóstico , Estudos Retrospectivos , Neoplasias do Colo do Útero/diagnóstico por imagem
9.
Mol Imaging Biol ; 23(5): 756-765, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33763816

RESUMO

PURPOSE: To examine the prognostic significance of pretreatment 2-deoxy-2-[18F]fluoro-D-glucose ([18F]-FDG) positron emission tomography (PET)-based radiomic features using a machine learning approach in patients with endometrial cancers. PROCEDURES: Included in this retrospective study were 53 patients with endometrial cancers who underwent [18F]-FDG PET/X-ray computed tomography (CT) before treatment. Since two different PET scanners were used, post-reconstruction harmonization was performed for all PET parameters using the ComBat harmonization method. Four clinical (age, histological type, stage, and treatment method) and 40 [18F]-FDG PET-based radiomic features were ranked, and a subset of useful features was selected based on the decrease in the Gini impurity in terms of associations with disease progression. The machine learning algorithms (random forest, neural network, k-nearest neighbors (kNN), naive Bayes, logistic regression, and support vector machine) were compared using the areas under the receiver operating characteristic curve (AUC) and validated by the random sampling method. Progression-free survival (PFS) and overall survival (OS) were assessed by the Cox regression analysis. RESULTS: The five best predictors of disease progression were coarseness, gray-level run length nonuniformity, stage, treatment method, and gray-level zone length nonuniformity. The kNN model obtained the best performance classifier for predicting the disease progression (AUC =0.890, accuracy =0.849, F1 score =0.848, precision =0.857, and recall =0.849). Coarseness which was the first ranked radiomic feature was selected for survival analyses, and only coarseness remained as a significant and independent factor for both PFS (hazard ratios (HR), 0.65; 95 % confidence interval [CI], 0.49-0.86; p=0.003) and OS (HR, 0.52; 95 % CI, 0.36-0.76; p<0.001) at multivariate Cox regression analysis. CONCLUSIONS: [18F]-FDG PET-based radiomic analysis using a machine learning approach may be useful for predicting tumor progression and prognosis in patients with endometrial cancers.


Assuntos
Diagnóstico por Computador/métodos , Neoplasias do Endométrio , Aprendizado de Máquina , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adulto , Idoso , Neoplasias do Endométrio/diagnóstico por imagem , Neoplasias do Endométrio/mortalidade , Neoplasias do Endométrio/patologia , Feminino , Fluordesoxiglucose F18/administração & dosagem , Fluordesoxiglucose F18/uso terapêutico , Humanos , Pessoa de Meia-Idade , Prognóstico , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/uso terapêutico
10.
Abdom Radiol (NY) ; 46(7): 3184-3192, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33675380

RESUMO

PURPOSE: To assess the utility of a machine-learning approach for predicting liver function based on technetium-99 m-galactosyl serum albumin (99mTc-GSA) single photon emission computed tomography (SPECT)/CT. METHODS: One hundred twenty-eight patients underwent a 99mTc-GSA SPECT/CT-based liver function evaluation. All were classified into the low liver-damage or high liver-damage group. Four clinical (age, sex, background liver disease and histological type) and 8 quantitative 99mTc-GSA SPECT/CT features (receptor index [LHL15], clearance index [HH15], liver-SUVmax, liver-SUVmean, heart-SUVmax, metabolic volume of liver [MVL], total lesion GSA [TL-GSA, liver-SUVmean × MVL] and SUVmax ratio [liver-SUVmax/heart-SUVmax]) were obtained. To predict high liver damage, a machine learning classification with features selection based on Gini impurity and principal component analysis (PCA) were performed using a support vector machine and a random forest (RF) with a five-fold cross-validation scheme. To overcome imbalanced data, stratified sampling was used. The ability to predict high liver damage was evaluated using a receiver operating characteristic (ROC) curve analysis. RESULTS: Four indices (LHL15, HH15, heart SUVmax and SUVmax ratio) yielded high areas under the ROC curves (AUCs) for predicting high liver damage (range: 0.89-0.93). In a machine learning classification, the RF with selected features (heart SUVmax, SUVmax ratio, LHL15, HH15, and background liver disease) and PCA model yielded the best performance for predicting high liver damage (AUC = 0.956, sensitivity = 96.3%, specificity = 90.0%, accuracy = 91.4%). CONCLUSION: A machine-learning approach based on clinical and quantitative 99mTc-GSA SPECT/CT parameters might be useful for predicting liver function.


Assuntos
Fígado , Compostos Radiofarmacêuticos , Hepatectomia , Humanos , Fígado/diagnóstico por imagem , Testes de Função Hepática , Aprendizado de Máquina , Agregado de Albumina Marcado com Tecnécio Tc 99m , Pentetato de Tecnécio Tc 99m , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X
11.
Cancers (Basel) ; 13(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546279

RESUMO

We investigated the value of deep learning (DL) in differentiating between benign and metastatic cervical lymph nodes (LNs) using pretreatment contrast-enhanced computed tomography (CT). This retrospective study analyzed 86 metastatic and 234 benign (non-metastatic) cervical LNs at levels I-V in 39 patients with oral squamous cell carcinoma (OSCC) who underwent preoperative CT and neck dissection. LNs were randomly divided into training (70%), validation (10%), and test (20%) sets. For the validation and test sets, cervical LNs at levels I-II were evaluated. Convolutional neural network analysis was performed using Xception architecture. Two radiologists evaluated the possibility of metastasis to cervical LNs using a 4-point scale. The area under the curve of the DL model and the radiologists' assessments were calculated and compared at levels I-II, I, and II. In the test set, the area under the curves at levels I-II (0.898) and II (0.967) were significantly higher than those of each reader (both, p < 0.05). DL analysis of pretreatment contrast-enhanced CT can help classify cervical LNs in patients with OSCC with better diagnostic performance than radiologists' assessments alone. DL may be a valuable diagnostic tool for differentiating between benign and metastatic cervical LNs.

13.
PeerJ Comput Sci ; 6: e312, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33816963

RESUMO

BACKGROUND: Deep learning using convolutional neural networks (CNN) has achieved significant results in various fields that use images. Deep learning can automatically extract features from data, and CNN extracts image features by convolution processing. We assumed that increasing the image size using interpolation methods would result in an effective feature extraction. To investigate how interpolation methods change as the number of data increases, we examined and compared the effectiveness of data augmentation by inversion or rotation with image augmentation by interpolation when the image data for training were small. Further, we clarified whether image augmentation by interpolation was useful for CNN training. To examine the usefulness of interpolation methods in medical images, we used a Gender01 data set, which is a sex classification data set, on chest radiographs. For comparison of image enlargement using an interpolation method with data augmentation by inversion and rotation, we examined the results of two- and four-fold enlargement using a Bilinear method. RESULTS: The average classification accuracy improved by expanding the image size using the interpolation method. The biggest improvement was noted when the number of training data was 100, and the average classification accuracy of the training model with the original data was 0.563. However, upon increasing the image size by four times using the interpolation method, the average classification accuracy significantly improved to 0.715. Compared with the data augmentation by inversion and rotation, the model trained using the Bilinear method showed an improvement in the average classification accuracy by 0.095 with 100 training data and 0.015 with 50,000 training data. Comparisons of the average classification accuracy of the chest X-ray images showed a stable and high-average classification accuracy using the interpolation method. CONCLUSION: Training the CNN by increasing the image size using the interpolation method is a useful method. In the future, we aim to conduct additional verifications using various medical images to further clarify the reason why image size is important.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA