Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(4): 1824-1834, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36602164

RESUMO

The interface between the polymer and nanoparticle has a vital role in determining the overall dielectric properties of a dielectric polymer nanocomposite. In this study, a novel dielectric nanocomposite containing a high permittivity polymer, cyanoethylated cellulose (CRS) and TiO2 nanoparticles surface modified by hydrogen plasma treatments was successfully prepared with different weight percentages (10%, 20% and 30%) of hydrogenated TiO2. Internal structure of H plasma treated TiO2 nanoparticles (H-TiO2) and the intermolecular interactions and morphology within the polymer nanocomposites were analysed. H-TiO2/CRS thin films on SiO2/Si wafers were used to form metal-insulator-metal (MIM) type capacitors. Capacitances and loss factors in the frequency range of 1 kHz to 1 MHz were measured. At 1 kHz H-TiO2/CRS nanocomposites exhibited ultra-high dielectric constants of 80, 118 and 131 for nanocomposites with 10%, 20% and 30% weight of hydrogenated TiO2 respectively, significantly higher than values of pure CRS (21) and TiO2 (41). Furthermore, all three H-TiO2 /CRS nanocomposites show a loss factor <0.3 at 1 kHz and low leakage current densities (10-6 A cm-2-10-7 A cm-2). Leakage was studied using conductive atomic force microscopy (C-AFM) and it was observed that the leakage is associated with H-TiO2 nanoparticles embedded in the CRS polymer matrix. Although, modified interface slightly reduces energy densities compared to pristine TiO2/CRS system, the capacitance values for H-TiO2/CRS-in the voltage range of -2 V to 2 V are very stable. Whilst H-TiO2/CRS possesses ultra-high dielectric constants (>100), this study reveals that the polymer nanoparticle interface has a potential influence on dielectric behaviour of the composite.

2.
RSC Adv ; 11(40): 24862-24871, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35481011

RESUMO

Rechargeable aqueous zinc-ion batteries (ZIBs) are promising wearable electronic power sources. However, solid-state electrolytes with high ionic conductivities and long-term stabilities are still challenging to fabricate for high-performance ZIBs. Herein, locust bean gum (LBG) was used as a natural bio-polymer to prepare a free-standing quasi-solid-state ZnSO4/MnSO4 electrolyte. The as-obtained LBG electrolyte showed high ionic conductivity reaching 33.57 mS cm-1 at room temperature. This value is so far the highest among the reported quasi-solid-state electrolytes. Besides, the as-obtained LBG electrolyte displayed excellent long-term stability toward a Zn anode. The application of the optimized LBG electrolyte in Zn-MnO2 batteries achieved a high specific capacity reaching up to 339.4 mA h g-1 at 0.15 A g-1, a superior rate performance of 143.3 mA h g-1 at 6 A g-1, an excellent capacity retention of 100% over 3300 cycles and 93% over 4000 cycles combined with a wide working temperature range (0-40 °C) and good mechanical flexibility (capacity retention of 80.74% after 1000 bending cycles at a bending angle of 90°). In sum, the proposed ZIBs-based LBG electrolyte with high electrochemical performance looks promising for the future development of bio-compatible and environmentally friendly solid-state energy storage devices.

3.
Carbohydr Polym ; 172: 315-321, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28606540

RESUMO

A dielectric nanocomposite based oncyanoethylatedcellulose (CRS) and MMT nanoclay was successfully prepared with different weight percentages (5%, 10% and 15%) of MMT. MMT nanoplatets obtained via sonication of MMT nanoclay in acetone for a prolonged period was used in the preparation of CRS-MMT nanocomposites. CRS-MMT thin films on SiO2/Si wafers are used to form metal-insulator-metal (MIM) type capacitors. At 1kHz CRS-MMT nanocomposites exhibited high dielectric constants (εr) of 71, 55 and 42 with low leakage current densities (10-6-10-7A/cm2) for nanocomposites with 5%, 10% and 15% weight of MMT respectively, higher than values of pure CRS (21), Na-MMT(10). Reduction of εr with higher MMT loading can be attributed to a network formation as evidenced via strong bonding interactions between CRS and MMT leading to a lower molecular mobility. The leakage is studied using conductive atomic force microscopy (C-AFM) indicates that leakage pathways are associated with MMT nanoplatelets embedded in the CRS polymer matrix.

4.
Nanotechnology ; 27(19): 195402, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27040504

RESUMO

A novel dielectric nanocomposite containing a high permittivity polymer, cyanoethylated cellulose (CRS) and TiO2 nanoparticles was successfully prepared with different weight percentages (10%, 20% and 30%) of TiO2. The intermolecular interactions and morphology within the polymer nanocomposites were analysed. TiO2/CRS nanofilms on SiO2/Si wafers were used to form metal-insulator-metal type capacitors. Capacitances and loss factors in the frequency range of 1 kHz-1 MHz were measured. At 1 kHz CRS-TiO2 nanocomposites exhibited ultra high dielectric constants of 118, 176 and 207 for nanocomposites with 10%, 20% and 30% weight of TiO2 respectively, significantly higher than reported values of pure CRS (21), TiO2 (41) and other dielectric polymer-TiO2 nanocomposite films. Furthermore, all three CRS-TiO2 nanocomposites show a loss factor <0.3 at 1 kHz and low leakage current densities (10(-6)-10(-7) A cm(-2)). Leakage was studied using conductive atomic force microscopy and it was observed that the leakage is associated with TiO2 nanoparticles embedded in the CRS polymer matrix. A new class of ultra high dielectric constant hybrids using nanoscale inorganic dielectrics dispersed in a high permittivity polymer suitable for energy management applications is reported.

5.
Small ; 11(24): 2929-37, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-25703342

RESUMO

Energy scavenging has become a fundamental part of ubiquitous sensor networks. Of all the scavenging technologies, solar has the highest power density available. However, the energy source is erratic. Integrating energy conversion and storage devices is a viable route to obtain self-powered electronic systems which have long-term maintenance-free operation. In this work, we demonstrate an integrated-power-sheet, consisting of a string of series connected organic photovoltaic cells (OPCs) and graphene supercapacitors on a single substrate, using graphene as a common platform. This results in lighter and more flexible power packs. Graphene is used in different forms and qualities for different functions. Chemical vapor deposition grown high quality graphene is used as a transparent conductor, while solution exfoliated graphene pastes are used as supercapacitor electrodes. Solution-based coating techniques are used to deposit the separate components onto a single substrate, making the process compatible with roll-to-roll manufacture. Eight series connected OPCs based on poly(3-hexylthiophene)(P3HT):phenyl-C61-butyric acid methyl ester (PC60 BM) bulk-heterojunction cells with aluminum electrodes, resulting in a ≈5 V open-circuit voltage, provide the energy harvesting capability. Supercapacitors based on graphene ink with ≈2.5 mF cm(-2) capacitance provide the energy storage capability. The integrated-power-sheet with photovoltaic (PV) energy harvesting and storage functions had a mass of 0.35 g plus the substrate.

6.
ACS Appl Mater Interfaces ; 6(23): 20752-7, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25419994

RESUMO

In this article, the use of reduced graphene oxide (rGO) as a high-surface-area conductive additive for enhancing zinc-silver oxide (Zn-Ag2O) batteries is reported for the first time. Specific capacity, rate capability and cyclability are all improved with the addition of 5% thermally reduced graphene oxide to the electrode. It is shown that the rGO morphology becomes more beneficial as the active materials tend toward the nanoscale. The combination results in a better utilization of the active material, which in turn improves the specific capacity of the zinc-silver oxide batteries by ca. 50%, as a result of the more intimate contact with the nano (∼50 nm) electrode particles. The resulting rGO network also creates a high-surface-area conducting template for ZnO electrodeposition upon discharge, significantly reducing the overall particle size of the ZnO deposit, thus inhibiting the formation of dendrites, and increasing the number of achievable cycles from 4 to >160 with a basic cellulose separator. The morphology of the electrodes and its electrochemical parameters are studied as a function of cycling.

7.
Nanoscale ; 6(23): 14555-62, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25350481

RESUMO

Organic (P3HT/PCBM) solar cells are coated with ZnO nanowires as antireflection coatings and show up to 36% enhancement in efficiency. The improvement is ascribed to an effective refractive index which results in Fabry-Perot absorption bands which match the polymer band-gap. The effect is particularly pronounced at high light incidence angles. Simultaneously, the coating is used as a UV-barrier, demonstrating a 50% reduction in the rate of degradation of the polymers under accelerated lifetime testing. The coating also allows the surface of the solar cell to self-clean via two distinct routes. On one hand, photocatalytic degradation of organic material on ZnO is enhanced by the high surface area of the nanowires and quantified by dye degradation measurements. On the other, the surface of the nanowires can be functionalized to tune the water contact angle from superhydrophilic (16°) to superhydrophobic (152°), resulting in self-cleaning via the Lotus effect. The multifunctional ZnO nanowires are grown by a low cost, low temperature hydrothermal method, compatible with process limitations of organic solar cells.

8.
ACS Appl Mater Interfaces ; 6(17): 15434-9, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25127070

RESUMO

We describe a simple process for the fabrication of transparent and flexible, solid-state supercapacitors. Symmetric electrodes made up of binder-free single walled carbon nanotube (SWCNT) thin films were deposited onto polydimethylsiloxane substrates by vacuum filtration followed by a stamping method, and solid-state supercapacitor devices were assembled using a gel electrolyte. An optical transmittance of 82% was found for 0.02 mg of SWCNTs, and a specific capacitance of 22.2 F/g was obtained. The power density can reach to 41.5 kW · kg(-1) and shows good capacity retention (94%) upon cycling over 500 times. Fabricated supercapacitors will be relevant for the realization of transparent and flexible devices with energy storage capabilities, displays and touch screens in particular.

9.
Nanoscale Res Lett ; 9(1): 361, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25136278

RESUMO

Subwavelength nanostructures are considered as promising building blocks for antireflection and light trapping applications. In this study, we demonstrate excellent broadband antireflection effect from thin films of monolayer silica nanospheres with a diameter of 100 nm prepared by Langmuir-Blodgett method on glass substrates. With a single layer of compact silica nanosphere thin film coated on both sides of a glass, we achieved maximum transmittance of 99% at 560 nm. Furthermore, the optical transmission peak of the nanosphere thin films can be tuned over the UV-visible range by changing processing parameters during Langmuir-Blodgett deposition. The tunable optical transmission peaks of the Langmuir-Blodgett films were correlated with deposition parameters such as surface pressure, surfactant concentration, ageing of suspensions and annealing effect. Such peak-tunable broadband antireflection coating has wide applications in diversified industries such as solar cells, windows, displays and lenses.

10.
Nanotechnology ; 23(19): 194002, 2012 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-22538769

RESUMO

As a result of their morphology, nanowires bring new properties and the promise of performance for a range of electronic devices. This review looks into the properties of nanowires and the multiple ways in which they have been exploited for energy generation, from photovoltaics to piezoelectric generators.

11.
Nanotechnology ; 23(2): 025501, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22166842

RESUMO

In this paper, we present experimental results describing enhanced readout of the vibratory response of a doubly clamped zinc oxide (ZnO) nanowire employing a purely electrical actuation and detection scheme. The measured response suggests that the piezoelectric and semiconducting properties of ZnO effectively enhance the motional current for electromechanical transduction. For a doubly clamped ZnO nanowire resonator with radius ~10 nm and length ~1.91 µm, a resonant frequency around 21.4 MHz is observed with a quality factor (Q) of ~358 in vacuum. A comparison with the Q obtained in air (~242) shows that these nano-scale devices may be operated in fluid as viscous damping is less significant at these length scales. Additionally, the suspended nanowire bridges show field effect transistor (FET) characteristics when the underlying silicon substrate is used as a gate electrode or using a lithographically patterned in-plane gate electrode. Moreover, the Young's modulus of ZnO nanowires is extracted from a static bending test performed on a nanowire cantilever using an AFM and the value is compared to that obtained from resonant frequency measurements of electrically addressed clamped­clamped beam nanowire resonators.

12.
Nanotechnology ; 21(43): 435702, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-20876981

RESUMO

Polyaniline (PANI) nanobrushes were synthesized by template-free electrochemical galvanostatic methods. When the same method was applied to the carbon nanohorn (CNH) solution containing aniline monomers, a hybrid nanostructure containing PANI and CNHs was enabled after electropolymerization. This is the first report on the template-free method to make PANI nanobrushes and homogeneous hybrid soft matter (PANI) with carbon nanoparticles. Raman spectroscopy was used to analyze the interaction between CNH and PANI. Electrochemical nanofabrication offers simplicity and good control when used to make electronic devices. Both of these materials were applied in supercapacitors and an improvement capacitive current by using the hybrid material was observed.

13.
ACS Nano ; 4(5): 2730-4, 2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20415426

RESUMO

Solid-state and flexible zinc carbon (or Leclanche) batteries are fabricated using a combination of functional nanostructured materials for optimum performance. Flexible carbon nanofiber mats obtained by electrospinning are used as a current collector and cathode support for the batteries. The cathode layer consists of manganese oxide particles combined with single-walled carbon nanotubes for improved conductivity. A polyethylene oxide layer containing titanium oxide nanoparticles forms the electrolyte layer, and a thin zinc foil is used as the anode. The battery is shown to retain its performance under mechanically stressed conditions. The results show that the above configuration can achieve solid-state mechanical flexibility and increased shelf life with little sacrifice in performance.

14.
Nanotechnology ; 19(25): 255608, 2008 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-21828660

RESUMO

A solution growth approach for zinc oxide (ZnO) nanowires is highly appealing because of the low growth temperature and possibility for large area synthesis. Reported reaction times for ZnO nanowire synthesis, however, are long, spanning from several hours to days. In this work, we report on the rapid synthesis of ZnO nanowires on various substrates (such as poly(ethylene terephthalate) (PET), silicon and glass) using a commercially available microwave oven. The average growth rate of our nanowires is determined to be as high as 100 nm min(-1), depending on the microwave power. Transmission electron microscopy analysis revealed a defect-free single-crystalline lattice of the nanowires. A detailed analysis of the growth characteristics of ZnO nanowires as functions of growth time and microwave power is reported. Our work demonstrates the possibility of a fast synthesis route using microwave heating for nanomaterials synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA