Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 642: 829-836, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36870903

RESUMO

Advanced oxidation technologies (AOTs) proved to be effective in the degradation of hazardous organic impurities like acids, dyes, antibiotics etc. in the last few decades. AOTs are mainly based on the generation of reactive chemical species (RCS) such as hydroxyl, superoxide radicals etc., which plays an important role in the degradation of organiccompounds. In this work, plasma supported AOT i.e. Fenton reactions have been applied for the degradation of ibuprofen. As compared to traditional AOTs plasma assisted AOT is technologically superior due to its capability to produce RCS at a controlled rate without using chemical agents. This process work at normal room temperature and pressure. Herein, we optimized better operating conditions to generate good plasma discharge and hydroxyl radicals based on critical parameters, including frequency, pulse width and different gases like O2, Ar etc. Also, the one-pot carbonization method is used for the synthesis of Fe-based ordered mesoporous carbon (OMC) as a heterogeneous catalyst for the Fenton reactions. Using plasma-supported Fenton reactions, 88.3 % degradation efficiency is achieved using Fe-OMC catalyst for the ibuprofen degradation. Also, the mineralization of the ibuprofen is studied using total organic carbon (TOC) analysis.

2.
J Clin Exp Hematop ; 63(1): 25-31, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36843068

RESUMO

Intravascular large B-cell lymphoma (IVL) is a rare type of lymphoma characterized by tumor growth selectively within the vessels. The 5th edition of the World Health Organization classification defines IVL as a large B-cell lymphoma, the same as diffuse large B-cell lymphoma, not otherwise specified (DLBCL, NOS). Since the clinical manifestations of IVL are nonspecific, the diagnosis is time-consuming, and the course is often fatal. Serum soluble interleukin-2 receptor (sIL-2R) and serum lactate dehydrogenase (LDH) levels are known to be elevated in a variety of lymphomas. However, the mechanism of sIL-2R elevation in B-cell lymphomas is not fully understood. In this study, we analyzed the serum level of laboratory findings, including sIL-2R and LDH, as well as the presence of B symptoms in 39 patients with IVL, and compared them with 56 patients with stage IV DLBCL. Both sIL-2R and LDH levels were significantly higher in IVL than in DLBCL (p = 0.035 and p = 0.002, respectively). In IVL, there were no significant differences in both sIL-2R and LDH levels between patients with and without B symptoms (p = 0.206 and p = 0.441, respectively). However, in DLBCL, both sIL-2R and LDH levels were significantly higher in the presence of B symptoms (p = 0.001 and p < 0.001, respectively). The high sIL-2R and LDH levels in IVL may be related to the peripheral blood microenvironment, but further studies are needed to verify this.


Assuntos
Linfoma Difuso de Grandes Células B , Receptores de Interleucina-2 , Humanos , Linfoma Difuso de Grandes Células B/patologia , Microambiente Tumoral
3.
Chemosphere ; 287(Pt 1): 132029, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34474387

RESUMO

A simple water treatment system consisting of a deep UV light (λ = 222 nm) source, a mesoporous TiO2/boron-doped diamond (BDD) photocatalyst, and a BDD electrode was prepared and used to decompose sulfamethoxazole (SMX) in an advanced oxidation process. The mesoporous TiO2/BDD photocatalyst used with the electrochemical treatment promoted SMX decomposition, but the mesoporous TiO2/BDD photocatalyst alone had a similar ability to decompose SMX as photolysis. Fragments produced through photocatalytic treatment were decomposed during the electrochemical treatment and fragments produced during the electrochemical treatment were decomposed during the photocatalytic treatment, so performing the electrochemical and photocatalytic treatments together effectively decomposed SMX and decrease the total organic carbon concentration to a trace.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Boro , Diamante , Eletrodos , Oxirredução , Sulfametoxazol
4.
RSC Adv ; 10(3): 1793-1798, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35494675

RESUMO

Boron-doped diamond (BDD) electrodes have a wide potential window and can produce ozone by water electrolysis at high voltage. Though ozone has strong oxidative power (standard oxidation potential: 2.07 V vs. NHE), it cannot decompose certain types of recalcitrant organic matter completely. We developed an advanced oxidation process (AOP), in which hydroxy radicals with stronger oxidative power (standard oxidation potential: 2.85 V vs. NHE) are formed using a combination of ozone, photocatalyst, and UV. In this study, we fabricated a mesoporous TiO2/BDD hybrid electrode and examined its potential for AOPs. A synergetic effect between electrochemical water treatment and photocatalytic water treatment was observed with the hybrid electrode that did not occur with the BDD electrode.

5.
Water Res ; 150: 40-46, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30503873

RESUMO

If photocatalytic water purification technologies will find practical applications, the impact of total dissolved solids in the source water on the activity of the photocatalyst must be evaluated. In this study, we evaluated the effects of SiO32- in water on a TiO2 ceramic photocatalyst; specifically, we determined the effects of SiO32- on the rate of photocatalytic degradation of formic acid (as a model contaminant) and on the rate of photocatalytic inactivation of Escherichia coli in an aqueous solution. Both the rate of formic acid degradation and the sterilization rate decreased with increasing SiO32- concentration. On the other hand, at a given SiO32- concentration, the activity of the photocatalyst did not decrease over the course of 120 h, and the surface structure of the photocatalyst did not change (i.e., no precipitate formed on the surface). The decreases in photocatalytic activity due to the presence of SiO32- could be recovered by flushing the experimental apparatus with distilled water. These results show that the reason for the lower photocatalytic activity in the presence of SiO32- than in its absence was due to adsorption of SiO32- onto the surface of the TiO2 photocatalyst and that SiO32- adsorption was an equilibrium process in water.


Assuntos
Purificação da Água , Catálise , Cerâmica , Dióxido de Silício , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA