Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 926175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936010

RESUMO

Tumor necrosis factor (TNF) receptor-associated periodic syndrome (TRAPS) is an autoinflammatory periodic fever syndrome associated with heterozygous mutations in TNFRSF1A, which encodes TNF receptor type I (TNFR1). Although possible proinflammatory mechanisms have been proposed, most previous studies were performed using in vitro overexpression models, which could lead to undesirable inflammatory responses due to artificial overexpression. It is crucial to reproduce heterozygous mutations at physiological expression levels; however, such studies remain limited. In this study, we generated TRAPS mutant mice and analyzed their phenotypes. Three Tnfrsf1a mutant strains were generated by introducing T79M, G87V, or T90I mutation. T79M is a known mutation responsible for TRAPS, whereas G87V is a TRAPS mutation that we have reported, and T90I is a variant of unknown significance. Using these murine models, we investigated whether TRAPS mutations could affect the inflammatory responses in vivo and in vitro. We found that none of the mutant mice exhibited detectable inflammatory phenotypes under standard housing conditions for 1 year. Interestingly, TRAPS mutant (T79M and G87V) mice had reduced mortality rates after the administration of lipopolysaccharide (LPS) and D-galactosamine, which induce TNFα-dependent lethal hepatitis. Moreover, TRAPS mutations strongly suppressed the development of TNFα-mediated arthritis when crossed with human TNFα transgenic mice. In in vitro primary bone marrow-derived macrophage cultures, the T79M and G87V mutations attenuated the inflammatory responses to TNFα compared with the wild-type, whereas these mutations did not alter the responsiveness of these cells to LPS. The T90I mutant macrophages behaved similarly to wild type in response to LPS and TNFα. The TNFR1 levels were increased in whole-cell lysates of TRAPS mutant macrophages, whereas the cell surface expression of TNFR1 was significantly decreased in TRAPS mutant macrophages. Taken together, TRAPS mutations did not augment the inflammatory responses to TNFα and LPS; instead, they suppressed the response to TNFα via decreased cell surface expression of TNFR1. The stimulation of lymphotoxin-α, adenosine triphosphate, and norepinephrine in primary macrophages or various stimuli in murine splenocytes did not induce detectable inflammatory responses. In conclusion, TRAPS mutations suppressed responsiveness to TNFα, and TRAPS-associated inflammation is likely induced by unconfirmed disease-specific proinflammatory factors.


Assuntos
Doenças Hereditárias Autoinflamatórias/patologia , Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa , Animais , Febre , Doenças Hereditárias Autoinflamatórias/metabolismo , Humanos , Lipopolissacarídeos , Camundongos , Camundongos Transgênicos , Mutação , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Síndrome , Fator de Necrose Tumoral alfa/metabolismo
2.
Mod Rheumatol ; 31(2): 498-503, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32149538

RESUMO

OBJECTIVES: Rheumatoid arthritis (RA) is characterized by inflammation in multiple joints. In addition to causing joint destruction, the persistent systemic inflammation with RA increases the risk of cardiovascular disease. Although there are in vitro studies showing the prothrombotic effect of inflammatory cytokines, especially TNF, in vivo experimental evidence is lacking due to the complexity of in vivo modeling and observation. In this study, we aimed to model in vivo thrombus formation in arthritic mice and to determine whether the arthritic condition would further promote thrombotic formation. METHODS: Human TNF-transgenic mice were used as the arthritis model. Thrombus formation was observed on the testicular arterioles. Thrombus formation was induced by reactive oxygen species generated from hematoporphyrin under laser irradiation. RESULTS: Platelet thrombus formation was observed in real-time using a laser confocal microscopy in both wild-type and arthritic mice. Quantitative analyses revealed that no significant differences were observed in thrombus formation, represented by platelet attachment time and vascular obstruction time, in our experimental setting. CONCLUSION: Although we confirmed the usefulness of this novel technique for in vivo studies, further investigation is required to conclude the possible mechanism of prothrombotic phenotypes under inflammatory conditions.


Assuntos
Artrite Experimental/metabolismo , Trombose/metabolismo , Animais , Artrite Experimental/sangue , Artrite Experimental/patologia , Plaquetas/metabolismo , Citocinas/metabolismo , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Trombose/sangue , Trombose/patologia
4.
RMD Open ; 5(2): e000853, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31321075

RESUMO

Objective: Animal models for human diseases are especially valuable for clarifying molecular mechanisms before or around the onset. As a model for rheumatoid arthritis (RA), we utilise knock-in mice gp130F759. They have a Y759F mutation in gp130, a common receptor subunit for interleukin 6 (IL-6) family cytokines. Definitive arthritis develops around 8 months old and the incidence reaches 100% around 1 year old. Careful examination in the clinical course revealed very subtle resistance in flexibility of joints at 5 months old. Therefore, pathophysiological changes in gp130F759 were examined to dissect molecular mechanisms for preclinical phase of RA. Methods: Severity of arthritis in gp130F759 was evaluated with a clinical score system and histological quantification. Serum cytokines, autoantibodies and C reactive protein (CRP) were measured. Changes in the synovium were analysed by real-time PCR, flow cytometry and immunohistochemistry. Results: Around 5 months old, various types of cytokines, rheumatoid factor (RF), anti-circular citrullinated peptide IgM and CRP increased in the sera of gp130F759. Enhancement of neovascularisation, synovial hyperplasia and fibrosis was observed. Also, increases in haematopoietic cells dominated by innate immune cells and gene expression of Il6 and Padi4 were detected in the joints. Il6 was expressed by non-haematopoietic synovial cells, whereas PAD4 protein was detected in the synovial neutrophils. Padi4 is induced in neutrophils in vitro by IL-6. Increases of phospho-STAT3 and PAD4 protein were detected in the synovium. Deletion of IL-6 in gp130F759 normalised the amount of PAD4 protein in the joints. Conclusion: The IL-6-PAD4 axis operates in the earliest phase of arthritis in gp130F759, implicating it in early RA.


Assuntos
Artrite Reumatoide/sangue , Receptor gp130 de Citocina/genética , Interleucina-6/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Animais , Artrite Reumatoide/epidemiologia , Artrite Reumatoide/patologia , Autoanticorpos/sangue , Proteína C-Reativa/metabolismo , Citocinas/sangue , Feminino , Humanos , Imunoglobulina M/metabolismo , Incidência , Masculino , Camundongos , Camundongos Endogâmicos C57BL/genética , Modelos Animais , Mutação , Neutrófilos/metabolismo , Peptídeos Cíclicos/metabolismo , Fator Reumatoide/metabolismo , Índice de Gravidade de Doença , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Sinoviócitos/metabolismo
5.
Clin Immunol ; 150(1): 12-21, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24316591

RESUMO

We previously reported that somatic mutations in the p53 gene accumulated at a higher frequency in AID(activation induced cytidine deaminase)(+) RA-FLS, which may result in the malfunction of p53, causing the tumor-like properties of RA-FLS. Among the p53 mutations identified from 3 sources of AID(+) RA-FLS, we focused on the p53R248Q mutation because it was reported to enhance the invasiveness of lung cancer cells and to have dominant-negative activity for pro-apoptotic molecules. We obtained cDNA encoding the p53R248Q mutant and introduced it into the MH7A RA-FLS cell line. P53R248Q dramatically suppressed the expression of the pro-apoptotic molecule p53AIP1 even under oxidative stress, which normally upregulates p53AIP1, leading to apoptosis. Moreover, overexpression of p53AIP1 increased apoptosis, whereas p53AIP1 knockdown rescued the cells from apoptosis. Together, these studies indicate the critical role of p53AIP1 under DNA damaging stresses for cell fate determination in RA-FLS containing the p53R248Q mutation.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Apoptose/fisiologia , Proteína Supressora de Tumor p53/genética , Artrite Reumatoide , Linhagem Celular , Fibroblastos , Técnicas de Silenciamento de Genes , Humanos , Peróxido de Hidrogênio/farmacologia , Mutação , Oxidantes/farmacologia , Estresse Oxidativo , Fosforilação , RNA Interferente Pequeno/genética , Membrana Sinovial/citologia , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA