Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 133(20)2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32989042

RESUMO

One of the most rapid (less than 4 ms) transmembrane cellular mechanotransduction events involves activation of transient receptor potential vanilloid 4 (TRPV4) ion channels by mechanical forces transmitted across cell surface ß1 integrin receptors on endothelial cells, and the transmembrane solute carrier family 3 member 2 (herein denoted CD98hc, also known as SLC3A2) protein has been implicated in this response. Here, we show that ß1 integrin, CD98hc and TRPV4 all tightly associate and colocalize in focal adhesions where mechanochemical conversion takes place. CD98hc knockdown inhibits TRPV4-mediated calcium influx induced by mechanical forces, but not by chemical activators, thus confirming the mechanospecificity of this signaling response. Molecular analysis reveals that forces applied to ß1 integrin must be transmitted from its cytoplasmic C terminus via the CD98hc cytoplasmic tail to the ankyrin repeat domain of TRPV4 in order to produce ultrarapid, force-induced channel activation within the focal adhesion.


Assuntos
Integrina beta1 , Mecanotransdução Celular , Adesão Celular , Células Endoteliais/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-29038743

RESUMO

An in vitro model of the human kidney glomerulus - the major site of blood filtration - could facilitate drug discovery and illuminate kidney-disease mechanisms. Microfluidic organ-on-a-chip technology has been used to model the human proximal tubule, yet a kidney-glomerulus-on-a-chip has not been possible because of the lack of functional human podocytes - the cells that regulate selective permeability in the glomerulus. Here, we demonstrate an efficient (> 90%) and chemically defined method for directing the differentiation of human induced pluripotent stem (hiPS) cells into podocytes that express markers of the mature phenotype (nephrin+, WT1+, podocin+, Pax2-) and that exhibit primary and secondary foot processes. We also show that the hiPS-cell-derived podocytes produce glomerular basement-membrane collagen and recapitulate the natural tissue/tissue interface of the glomerulus, as well as the differential clearance of albumin and inulin, when co-cultured with human glomerular endothelial cells in an organ-on-a-chip microfluidic device. The glomerulus-on-a-chip also mimics adriamycin-induced albuminuria and podocyte injury. This in vitro model of human glomerular function with mature human podocytes may facilitate drug development and personalized-medicine applications.

3.
Proc Natl Acad Sci U S A ; 114(23): E4621-E4630, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28536193

RESUMO

Podocytes form the outer part of the glomerular filter, where they have to withstand enormous transcapillary filtration forces driving glomerular filtration. Detachment of podocytes from the glomerular basement membrane precedes most glomerular diseases. However, little is known about the regulation of podocyte adhesion in vivo. Thus, we systematically screened for podocyte-specific focal adhesome (FA) components, using genetic reporter models in combination with iTRAQ-based mass spectrometry. This approach led to the identification of FERM domain protein EPB41L5 as a highly enriched podocyte-specific FA component in vivo. Genetic deletion of Epb41l5 resulted in severe proteinuria, detachment of podocytes, and development of focal segmental glomerulosclerosis. Remarkably, by binding and recruiting the RhoGEF ARGHEF18 to the leading edge, EPB41L5 directly controls actomyosin contractility and subsequent maturation of focal adhesions, cell spreading, and migration. Furthermore, EPB41L5 controls matrix-dependent outside-in signaling by regulating the focal adhesome composition. Thus, by linking extracellular matrix sensing and signaling, focal adhesion maturation, and actomyosin activation EPB41L5 ensures the mechanical stability required for podocytes at the kidney filtration barrier. Finally, a diminution of EPB41L5-dependent signaling programs appears to be a common theme of podocyte disease, and therefore offers unexpected interventional therapeutic strategies to prevent podocyte loss and kidney disease progression.


Assuntos
Actomiosina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Adesões Focais/metabolismo , Proteínas de Membrana/metabolismo , Podócitos/metabolismo , Animais , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/genética , Feminino , Adesões Focais/patologia , Técnicas de Inativação de Genes , Glomerulosclerose Segmentar e Focal/etiologia , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Síndrome Nefrótica/etiologia , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/patologia , Podócitos/patologia , Gravidez , Proteômica , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais
4.
Cell Syst ; 3(5): 456-466.e4, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27894999

RESUMO

Smoking represents a major risk factor for chronic obstructive pulmonary disease (COPD), but it is difficult to characterize smoke-induced injury responses under physiological breathing conditions in humans due to patient-to-patient variability. Here, we show that a small airway-on-a-chip device lined by living human bronchiolar epithelium from normal or COPD patients can be connected to an instrument that "breathes" whole cigarette smoke in and out of the chips to study smoke-induced pathophysiology in vitro. This technology enables true matched comparisons of biological responses by culturing cells from the same individual with or without smoke exposure. These studies led to identification of ciliary micropathologies, COPD-specific molecular signatures, and epithelial responses to smoke generated by electronic cigarettes. The smoking airway-on-a-chip represents a tool to study normal and disease-specific responses of the human lung to inhaled smoke across molecular, cellular and tissue-level responses in an organ-relevant context.


Assuntos
Pulmão , Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais , Humanos , Doença Pulmonar Obstrutiva Crônica , Respiração , Fumar
5.
Am J Respir Cell Mol Biol ; 50(6): 1107-17, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24405281

RESUMO

The acute respiratory distress syndrome (ARDS), a devastating lung disease that has no cure, is exacerbated by life-supportive mechanical ventilation that worsens lung edema and inflammation through the syndrome of ventilator-induced lung injury. Recently, the membrane ion channel transient receptor potential vanilloid 4 (TRPV4) on alveolar macrophages was shown to mediate murine lung vascular permeability induced by high-pressure mechanical ventilation. The objective of this study was to determine whether inhalation of nanoparticles (NPs) containing the TRPV4 inhibitor ruthenium red (RR) prevents ventilator-induced lung edema in mice. Poly-lactic-co-glycolic acid NPs containing RR were evaluated in vitro for their ability to block TRPV4-mediated calcium signaling in alveolar macrophages and capillary endothelial cells. Lungs from adult C57BL6 mice treated with nebulized NPs were then used in ex vivo ventilation perfusion experiments to assess the ability of the NPs to prevent high-pressure mechanical ventilation-induced lung edema. Poly-lactic-co-glycolic acid NPs (300 nm) released RR for 150 hours in vitro, and blocked TRPV4-mediated calcium signaling in cells up to 7 days after phagocytosis. Inhaled NPs deposited in alveoli of spontaneously breathing mice were rapidly phagocytosed by alveolar macrophages, and blocked increased vascular permeability from high-pressure mechanical ventilation for 72 hours in ex vivo ventilation perfusion experiments. These data offer proof of principle that inhalation of NPs containing a TRPV4 inhibitor prevents ventilator damage for several days, and imply that this novel drug delivery strategy could be used to target alveolar macrophages in patients at risk of ventilator-induced lung injury before initiating mechanical ventilation.


Assuntos
Nanopartículas/administração & dosagem , Edema Pulmonar/prevenção & controle , Rutênio Vermelho/administração & dosagem , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Administração por Inalação , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade/efeitos dos fármacos , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Edema Pulmonar/metabolismo , Respiração/efeitos dos fármacos , Respiração Artificial/métodos , Canais de Cátion TRPV/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Ventiladores Mecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA