Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Biochem Biophys Res Commun ; 718: 150058, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38729076

RESUMO

The therapeutic efficacy of radiotherapy (RT) is primarily driven by two factors: biophysical DNA damage in cancer cells and radiation-induced anti-tumor immunity. However, Anti-tumor immune responses between X-ray RT (XRT) and carbon-ion RT (CIRT) remain unclear. In this study, we, employed mouse models to assess the immunological contribution, especially cytotoxic T-lymphocyte (CTL)-mediated immunity, to the therapeutic effectiveness of XRT and CIRT in shrinking tumors. We irradiated mouse intradermal tumors of B16F10-ovalbumin (OVA) mouse melanoma cells and 3LL-OVA mouse lung cancer cells with carbon-ion beams or X-rays in the presence or absence of CTLs. CTL removal was performed by administration of anti-CD8 monoclonal antibody (mAb) in mice. Based on tumor growth delay, we determined the tumor growth and regression curves. The enhancement ratio (ER) of the slope of regression lines in the presence of CTLs, relative to the absence of CTLs, indicates the dependency of RT on CTLs for shrinking mouse tumors, and the biological effectiveness (RBE) of CIRT relative to XRT were calculated. Tumor growth curves revealed that the elimination of CD8+ CTLs by administrating anti-CD8 mAb accelerated tumor growth compared to the presence of CTLs in both RTs. The ERs were larger in CIRT compared to XRT in the B16F10-OVA tumor models, but not in the 3LL-OVA models, suggesting a greater contribution of CTL-mediated anti-tumor immunity to tumor reduction in CIRT compared to XRT in the B16F10-OVA tumor model. In addition, the RBE values for both models were larger in the presence of CTLs compared to models without CTLs, suggesting that CIRT may utilize CTL-mediated anti-tumor immunity more than X-ray. The findings from this study suggest that although immunological contribution to therapeutic efficacy may vary depending on the type of tumor cell, CIRT utilizes CTL-mediated immunity to a greater extent compared to XRT.

2.
RSC Adv ; 14(14): 9509-9513, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516151

RESUMO

We elucidate the decomposition mechanism of hydrogen peroxide, which is formed by water radiolysis, by gold nanoparticles (GNPs) under X-ray irradiation. The variations in yields of hydrogen peroxide generated in the presence of GNPs are evaluated using the Ghormley technique. The increase of yields of OH radicals has been quantified using Ampliflu® Red solutions. Almost all hydrogen peroxide generated by irradiation of <25 Gy is decomposed by GNPs, while the yield of OH radicals increases by 1.6 times. The amount of OH radicals thus obtained is almost equivalent to that of the decomposed hydrogen peroxide. The decomposition of hydrogen peroxide is an essential reaction to produce additional OH radicals efficiently in the vicinity of GNPs.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38479560

RESUMO

PURPOSE: Neutron capture enhanced particle therapy (NCEPT) is a proposed augmentation of charged particle therapy that exploits thermal neutrons generated internally, within the treatment volume via nuclear fragmentation, to deliver a biochemically targeted radiation dose to cancer cells. This work is the first experimental demonstration of NCEPT, performed using both carbon and helium ion beams with 2 different targeted neutron capture agents (NCAs). METHODS AND MATERIALS: Human glioblastoma cells (T98G) were irradiated by carbon and helium ion beams in the presence of NCAs [10B]-BPA and [157Gd]-DOTA-TPP. Cells were positioned within a polymethyl methacrylate phantom either laterally adjacent to or within a 100 × 100 × 60 mm spread out Bragg peak (SOBP). The effect of NCAs and location relative to the SOBP on the cells was measured by cell growth and survival assays in 6 independent experiments. Neutron fluence within the phantom was characterized by quantifying the neutron activation of gold foil. RESULTS: Cells placed inside the treatment volume reached 10% survival by 2 Gy of carbon or 2 to 3 Gy of helium in the presence of NCAs compared with 5 Gy of carbon and 7 Gy of helium with no NCA. Cells placed adjacent to the treatment volume showed a dose-dependent decrease in cell growth when treated with NCAs, reaching 10% survival by 6 Gy of carbon or helium (to the treatment volume), compared with no detectable effect on cells without NCA. The mean thermal neutron fluence at the center of the SOBP was approximately 2.2 × 109 n/cm2/Gy (relative biological effectiveness) for the carbon beam and 5.8 × 109 n/cm2/Gy (relative biological effectiveness) for the helium beam and gradually decreased in all directions. CONCLUSIONS: The addition of NCAs to cancer cells during carbon and helium beam irradiation has a measurable effect on cell survival and growth in vitro. Through the capture of internally generated neutrons, NCEPT introduces the concept of a biochemically targeted radiation dose to charged particle therapy. NCEPT enables the established pharmaceuticals and concepts of neutron capture therapy to be applied to a wider range of deeply situated and diffuse tumors, by targeting this dose to microinfiltrates and cells outside of defined treatment regions. These results also demonstrate the potential for NCEPT to provide an increased dose to tumor tissue within the treatment volume, with a reduction in radiation doses to off-target tissue.

4.
Cancer Sci ; 115(1): 227-236, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37994570

RESUMO

Charged particle beams induce various biological effects by creating high-density ionization through the deposition of energy along the beam's trajectory. Charged particle beams composed of neon ions (20 Ne10+ ) hold great potential for biomedical applications, but their physiological effects on living organs remain uncertain. In this study, we demonstrate that neon-ion beams expedite the process of reoxygenation in tumor models. We simulated mouse SCCVII syngeneic tumors and exposed them to either X-ray or neon-ion beams. Through an in vivo radiobiological assay, we observed a reduction in the hypoxic fraction in tumors irradiated with 8.2 Gy of neon-ion beams 30 h after irradiation compared to 6 h post-irradiation. Conversely, no significant changes in hypoxia were observed in tumors irradiated with 8.2 Gy of X-rays. To directly quantify hypoxia in the irradiated living tumors, we utilized dynamic contrast-enhanced magnetic resonance imaging (MRI) and diffusion-weighted imaging. These combined MRI techniques revealed that the non-hypoxic fraction in neon-irradiated tumors was significantly higher than that in X-irradiated tumors (69.53% vs. 47.67%). Simultaneously, the hypoxic fraction in neon-ion-irradiated tumors (2.77%) was lower than that in X-irradiated tumors (4.27%) and non-irradiated tumors (32.44%). These results support the notion that accelerated reoxygenation occurs more effectively with neon-ion beam irradiation compared to X-rays. These findings shed light on the physiological effects of neon-ion beams on tumors and their microenvironment, emphasizing the therapeutic advantage of using neon-ion charged particle beams to manipulate tumor reoxygenation.


Assuntos
Neoplasias , Camundongos , Animais , Neônio , Íons , Hipóxia , Microambiente Tumoral
5.
Phys Med ; 105: 102508, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36549067

RESUMO

PURPOSE: Track structure Monte Carlo (MC) codes have achieved successful outcomes in the quantitative investigation of radiation-induced initial DNA damage. The aim of the present study is to extend a Geant4-DNA radiobiological application by incorporating a feature allowing for the prediction of DNA rejoining kinetics and corresponding cell surviving fraction along time after irradiation, for a Chinese hamster V79 cell line, which is one of the most popular and widely investigated cell lines in radiobiology. METHODS: We implemented the Two-Lesion Kinetics (TLK) model, originally proposed by Stewart, which allows for simulations to calculate residual DNA damage and surviving fraction along time via the number of initial DNA damage and its complexity as inputs. RESULTS: By optimizing the model parameters of the TLK model in accordance to the experimental data on V79, we were able to predict both DNA rejoining kinetics at low linear energy transfers (LET) and cell surviving fraction. CONCLUSION: This is the first study to demonstrate the implementation of both the cell surviving fraction and the DNA rejoining kinetics with the estimated initial DNA damage, in a realistic cell geometrical model simulated by full track structure MC simulations at DNA level and for various LET. These simulation and model make the link between mechanistic physical/chemical damage processes and these two specific biological endpoints.


Assuntos
Dano ao DNA , Prótons , Cricetinae , Animais , Sobrevivência Celular , Cinética , DNA/química , Método de Monte Carlo
6.
Cancer Cell Int ; 22(1): 391, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494817

RESUMO

BACKGROUND: Cervical cancer is the second most common cancer in women and causes more than 250,000 deaths worldwide. Among these, the incidence of cervical adenocarcinomas is increasing. Cervical adenocarcinoma is not only difficult to detect and prevent in the early stages with screening, but it is also resistant to chemotherapy and radiotherapy, and its prognosis worsens significantly as the disease progresses. Furthermore, when recurrence or metastasis is observed, treatment options are limited and there is no curative treatment. Recently, heavy-particle radiotherapy has attracted attention owing to its high tumor control and minimal damage to normal tissues. In addition, heavy particle irradiation is effective for cancer stem cells and hypoxic regions, which are difficult to treat. METHODS: In this study, we cultured cervical adenocarcinoma cell lines (HeLa and HCA-1) in two-dimensional (2D) or three-dimensional (3D) spheroid cultures and evaluated the effects of X-ray and carbon-ion (C-ion) beams. RESULTS: X-ray irradiation decreased the cell viability in a dose-dependent manner in 2D cultures, whereas this effect was attenuated in 3D spheroid cultures. In contrast, C-ion irradiation demonstrated the same antitumor effect in 3D spheroid cultures as in 2D cultures. In 3D spheroid cultures, X-rays and anticancer drugs are attenuated because of hypoxia inside the spheroids. However, the impact of the C-ion beam was almost the same as that of the 2D culture, because heavy-particle irradiation was not affected by hypoxia. CONCLUSION: These results suggest that heavy-particle radiotherapy may be a new therapeutic strategy for overcoming the resistance of cervical adenocarcinoma to treatment.

7.
Proc Natl Acad Sci U S A ; 119(13): e2119132119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35324325

RESUMO

SignificanceDNA damage causes loss of or alterations in genetic information, resulting in cell death or mutations. Ionizing radiations produce local, multiple DNA damage sites called clustered DNA damage. In this study, a complete protocol was established to analyze the damage complexity of clustered DNA damage, wherein damage-containing genomic DNA fragments were selectively concentrated via pulldown, and clustered DNA damage was visualized by atomic force microscopy. It was found that X-rays and Fe ion beams caused clustered DNA damage. Fe ion beams also produced clustered DNA damage with high complexity. Fe ion beam-induced complex DNA double-strand breaks (DSBs) containing one or more base lesion(s) near the DSB end were refractory to repair, implying their lethal effects.


Assuntos
Dano ao DNA , Radiação Ionizante , DNA/genética , DNA/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Microscopia de Força Atômica
8.
Nanomaterials (Basel) ; 12(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269259

RESUMO

Gold nanoparticles (AuNPs) can be used with megavolt (MV) X-rays to exert radiosensitization effects, as demonstrated in cell survival assays and mouse experiments. However, the detailed mechanisms are not clear; besides physical dose enhancement, several chemical and biological processes have been proposed. Reducing the AuNP concentration while achieving sufficient enhancement is necessary for the clinical application of AuNPs. Here, we used positively charged (+) AuNPs to determine the radiosensitization effects of AuNPs combined with MV X-rays on DNA damage in vitro. We examined the effect of low concentrations of AuNPs on DNA damage and reactive oxygen species (ROS) generation. DNA damage was promoted by 1.4 nm +AuNP with dose enhancement factors of 1.4 ± 0.2 for single-strand breaks and 1.2 ± 0.1 for double-strand breaks. +AuNPs combined with MV X-rays induced radiosensitization at the DNA level, indicating that the effects were physical and/or chemical. Although -AuNPs induced similar ROS levels, they did not cause considerable DNA damage. Thus, dose enhancement by low concentrations of +AuNPs may have occurred with the increase in the local +AuNP concentration around DNA or via DNA binding. +AuNPs showed stronger radiosensitization effects than -AuNPs. Combining +AuNPs with MV X-rays in radiation therapy may improve clinical outcomes.

9.
J Radiat Res ; 63(2): 221-229, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35021226

RESUMO

Time dependence of relative biological effectiveness (RBE) of carbon ions for skin damage was investigated to answer the question of whether the flat distribution of biological doses within a Spread-Out Bragg peak (SOBP) which is designed based on in vitro cell kill could also be flat for in vivo late responding tissue. Two spots of Indian ink intracutaneously injected into the legs of C3H mice were measured by calipers. An equieffective dose to produce 30% skin contraction was calculated from a dose-response curve and used to calculate the RBE of carbon ion beams. We discovered skin contraction progressed after irradiation and then reached a stable/slow progression phase. Equieffective doses decreased with time and the decrease was most prominent for gamma rays and least prominent for 100 keV/µm carbon ions. Survival parameter of alpha but not beta in the linear-quadratic model is closely related to the RBE of carbon ions. Biological doses within the SOBP increased with time but their distribution was still flat up to 1 year after irradiation. The outcomes of skin contraction studies suggest that (i) despite the higher RBE for skin contracture after carbon ions compared to gamma rays, gamma rays can result in a more severe late effect of skin contracture. This is due to the carbon effect saturating at a lower dose than gamma rays, and (ii) the biological dose distribution throughout the SOBP remains approximately the same even one year after exposure.


Assuntos
Contratura , Transferência Linear de Energia , Animais , Carbono , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Raios gama , Íons , Camundongos , Camundongos Endogâmicos C3H , Eficiência Biológica Relativa
10.
Cancers (Basel) ; 13(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885155

RESUMO

Track-structure Monte Carlo simulations are useful tools to evaluate initial DNA damage induced by irradiation. In the previous study, we have developed a Gean4-DNA-based application to estimate the cell surviving fraction of V79 cells after irradiation, bridging the gap between the initial DNA damage and the DNA rejoining kinetics by means of the two-lesion kinetics (TLK) model. However, since the DNA repair performance depends on cell line, the same model parameters cannot be used for different cell lines. Thus, we extended the Geant4-DNA application with a TLK model for the evaluation of DNA damage repair performance in HSGc-C5 carcinoma cells which are typically used for evaluating proton/carbon radiation treatment effects. For this evaluation, we also performed experimental measurements for cell surviving fractions and DNA rejoining kinetics of the HSGc-C5 cells irradiated by 70 MeV protons at the cyclotron facility at the National Institutes for Quantum and Radiological Science and Technology (QST). Concerning fast- and slow-DNA rejoining, the TLK model parameters were adequately optimized with the simulated initial DNA damage. The optimized DNA rejoining speeds were reasonably agreed with the experimental DNA rejoining speeds. Using the optimized TLK model, the Geant4-DNA simulation is now able to predict cell survival and DNA-rejoining kinetics for HSGc-C5 cells.

11.
Biochem Biophys Res Commun ; 585: 55-60, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34784552

RESUMO

Radiotherapy (RT) is an effective treatment option for cancer; however, its efficacy remains less than optimal in locally advanced cancer. Immune checkpoint inhibitor-based therapy, including the administration of anti-PD-L1 antibodies, is a promising approach that works synergistically with RT. Proton beam therapy and carbon-ion therapy are common options for patients with cancer. Proton and carbon ions are reported to induce an immune reaction in cancer cells; however, the underlying mechanisms remain unclear. Here, we aimed to compare the immune responses after irradiation (IR) with X-ray, protons, and carbon ions in an oesophageal cancer cell line and the underlying mechanisms. An oesophageal cancer cell line, KYSE450, was irradiated with 1 fraction/15 GyE (Gy equivalent) of X-ray, proton, or carbon-ion beams, and then, the cells were harvested for RNA sequencing and gene enrichment analysis. We also knocked out STING and STAT1 in the quest for mechanistic insights. RNA sequencing data revealed that gene expression signatures and biological processes were different in KYSE450 irradiated with X-ray, proton, and carbon-ion beams 6-24 h after IR. However, after 3 days, a common gene expression signature was detected, associated with biological pathways involved in innate immune responses. Gene knock-out experiments revealed that the STING-STAT1 axis underlies the immune reactions after IR. X-Ray, proton, and carbon-ion IRs induced similar immune responses, regulated by the STING-STAT1 axis.


Assuntos
Carbono , Neoplasias Esofágicas/genética , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Imunidade/efeitos da radiação , Prótons , Transcriptoma/efeitos da radiação , Raios X , Linhagem Celular Tumoral , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/patologia , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/imunologia , Ontologia Genética , Humanos , Imunidade/genética , Íons , RNA-Seq/métodos , Radiação/classificação , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transdução de Sinais/efeitos da radiação , Transcriptoma/imunologia
12.
Cell Death Discov ; 7(1): 184, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285189

RESUMO

Studies of radiation interaction with tumor cells often take apoptosis as the desired results. However, mitotic catastrophe and senescence are also promoted by clinically relevant doses of radiation. Furthermore, p53 is a well-known transcription factor that is closely associated with radiosensitivity and radiation-induced cell death. Therefore, we aimed to investigate the involvement of radiosensitivity, cell death modalities and p53 status in response to carbon-ion radiation (CIR) here. Isogenic human colorectal cancer cell lines HCT116 (p53+/+ and p53-/-) were irradiated with high-LET carbon ions. Cell survival was determined by the standard colony-forming assay. 53BP1 foci were visualized to identify the repair kinetics of DNA double-strand breaks (DSBs). Cellular senescence was measured by SA-ß-Gal and Ki67 staining. Mitotic catastrophe was determined with DAPI staining. Comparable radiosensitivities of p53+/+ and p53-/- HCT116 colorectal cells induced by CIR were demonstrated, as well as persistent 53BP1 foci indicated DNA repair deficiency in both cell lines. Different degree of premature senescence in isogenic HCT116 colorectal cancer cells suggested that CIR-induced premature senescence was more dependent on p21 but not p53. Sustained upregulation of p21 played multifunctional roles in senescence enhancement and apoptosis inhibition in p53+/+ cells. p21 inhibition further increased radiosensitivity of p53+/+ cells. Complex cell death modalities rather than single cell death were induced in both p53+/+ and p53-/- cells after 5 Gy CIR. Mitotic catastrophe was predominant in p53-/- cells due to inefficient activation of Chk1 and Chk2 phosphorylation in combination with p53 null. Senescence was the major cell death mechanism in p53+/+ cells via p21-dependent pathway. Taken together, p21-mediated premature senescence might be used by tumor cells to escape from CIR-induced cytotoxicity, at least for a time.

13.
Radiat Res ; 196(2): 197-203, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34043797

RESUMO

Radioprotectors with few side effects are useful for carbon-ion therapy, which directly induces clustering damage in DNA. With the aim of finding the most effective radioprotector, we investigated the effects of selected amino acids which might have chemical DNA-repair functions against therapeutic carbon ions. In the current study, we employed five amino acids: tryptophan (Trp), cysteine (Cys), methionine (Met), valine (Val) and alanine (Ala). Samples of supercoiled pBR322 plasmid DNA with a 17 mM amino acid were prepared in TE buffer (10 mM Tris, 1 mM ethylenediaminetetraacetic acid, pH 7.5). Phosphate buffered saline (PBS) was also used in assays of the 0.17 mM amino acid. The samples were irradiated with carbon-ion beams (290 MeV/u) on 6 cm spread-out Bragg peak at the National Institute of Radiological Sciences and Heavy Ion Medical Accelerator in Chiba, Japan. Breaks in the DNA were detected as changes in the plasmids and quantified by subsequent electrophoresis on agarose gels. DNA damage yields and protection factors for each amino acid were calculated as ratios relative to reagent-free controls. Trp and Cys showed radioprotective effects against plasmid DNA damage induced by carbon-ion beam, both in PBS and TE buffer, comparable to those of Met. The double-strand break (DSB) yields and protective effects of Trp were comparable to those of Cys. The yields of both single-strand breaks and DSBs correlated with the scavenging capacity of hydroxyl radicals (rate constant for scavenging hydroxyl radicals multiplied by the amino acid concentration) in bulk solution. These data indicate that the radioprotective effects of amino acids against plasmid DNA damage induced by carbon ions could be explained primarily by the scavenging capacity of hydroxyl radicals. These findings suggest that some amino acids, such as Trp, Cys and Met, have good potential as radioprotectors for preventing DNA damage in normal tissues in carbon-ion therapy.


Assuntos
Carbono/efeitos adversos , Dano ao DNA/efeitos da radiação , Radioterapia com Íons Pesados/efeitos adversos , Íons/efeitos adversos , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/efeitos da radiação , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Humanos , Radical Hidroxila/efeitos da radiação , Plasmídeos/química , Plasmídeos/genética , Plasmídeos/efeitos da radiação , Protetores contra Radiação/química , Protetores contra Radiação/efeitos da radiação
14.
J Radiat Res ; 62(4): 557-563, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-33912931

RESUMO

The Commission for 'Corresponding to Radiation Disaster of the Japanese Radiation Research Society' formulated a description of potential health effects triggered by tritium. This was in response to the issue of discharging water containing tritium filtered by the Advanced Liquid Processing System (ALPS), generated and stored in Fukushima Daiichi Nuclear Power Station after the accident. In this review article, the contents of the description, originally provided in Japanese, which gives clear and detailed explanation about potential health effects triggered by tritium based on reliable scientific evidence in an understandable way for the public, were summarized. Then, additional information about biochemical or environmental behavior of organically bound tritium (OBT) were summarized in order to help scientists who communicate with general public.


Assuntos
Medicina Baseada em Evidências , Saúde Pública , Trítio/efeitos adversos , Carcinogênese/patologia , Humanos , Exposição à Radiação , Radiação Ionizante
15.
Radiat Res ; 195(5): 441-451, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33721021

RESUMO

We examined lethal damages of X rays induced by direct and indirect actions, in terms of double-strand break (DSB) repair susceptibility using two kinds of repair-deficient Chinese hamster ovary (CHO) cell lines. These CHO mutants (51D1 and xrs6) are genetically deficient in one of the two important DNA repair pathways after genotoxic injury [homologous recombination (HR) and non-homologous end binding (NHEJ) pathways, respectively]. The contribution of indirect action on cell killing can be estimated by applying the maximum level of dimethylsulfoxide (DMSO) to get rid of OH radicals. To control the proportion of direct and indirect actions in lethal damage, we irradiated CHO mutant cells under aerobic and anoxic conditions. The contributions of indirect action on HR-defective 51D1 cells were 76% and 57% under aerobic and anoxic conditions, respectively. Interestingly, these percentages were similar to those of the wild-type cells even if the radiosensitivity was different. However, the contributions of indirect action to cell killing on NHEJ-defective xrs6 cells were 52% and 33% under aerobic and anoxic conditions, respectively. Cell killing by indirect action was significantly affected by the oxygen concentration and the DSB repair pathways but was not correlated with radiosensitivity. These results suggest that the lethal damage induced by direct action is mostly repaired by NHEJ repair pathway since killing of NHEJ-defective cells has significantly higher contribution by the direct action. In other words, the HR repair pathway may not effectively repair the DSB by direct action in place of the NHEJ repair pathway. We conclude that the type of DSB produced by direct action is different from that of DSB induced by indirect action.


Assuntos
Dano ao DNA , Oxigênio/metabolismo , Aerobiose/genética , Aerobiose/efeitos da radiação , Animais , Células CHO , Morte Celular/genética , Morte Celular/efeitos da radiação , Cricetulus , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Recombinação Homóloga/efeitos da radiação , Raios X/efeitos adversos
16.
Int J Nanomedicine ; 16: 359-370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33469290

RESUMO

PURPOSE: Gold nanoparticles (AuNPs) are candidate radiosensitizers for medium-energy photon treatment, such as γ-ray radiation in high-dose-rate (HDR) brachytherapy. However, high AuNP concentrations are required for sufficient dose enhancement for clinical applications. Here, we investigated the effect of positively (+) charged AuNP radiosensitization of plasmid DNA damage induced by 192Ir γ-rays, and compared it with that of negatively (-) charged AuNPs. METHODS: We observed DNA breaks and reactive oxygen species (ROS) generation in the presence of AuNPs at low concentrations. pBR322 plasmid DNA exposed to 64 ng/mL AuNPs was irradiated with 192Ir γ-rays via HDR brachytherapy. DNA breaks were detected by observing the changes in the form of the plasmid and quantified by agarose gel electrophoresis. The ROS generated by the AuNPs were measured with the fluorescent probe sensitive to ROS. The effects of positively (+) and negatively (-) charged AuNPs were compared to study the effect of surface charge on dose enhancement. RESULTS: +AuNPs at lower concentrations promoted a comparable level of radiosensitization by producing both single-stranded breaks (SSBs) and double-stranded breaks (DSBs) than those used in cell assays and Monte Carlo simulation experiments. The dose enhancement factor (DEF) for +AuNPs was 1.3 ± 0.2 for SSBs and 1.5 ± 0.4 for DSBs. The ability of +AuNPs to augment plasmid DNA damage is due to enhanced ROS generation. While -AuNPs generated similar ROS levels, they did not cause significant DNA damage. Thus, dose enhancement using low concentrations of +AuNPs presumably occurred via DNA binding or increasing local +AuNP concentration around the DNA. CONCLUSION: +AuNPs at low concentrations displayed stronger radiosensitization compared to -AuNPs. Combining +AuNPs with 192Ir γ-rays in HDR brachytherapy is a candidate method for improving clinical outcomes. Future development of cancer cell-specific +AuNPs would allow their wider application for HDR brachytherapy.


Assuntos
Braquiterapia , Dano ao DNA , Ouro/farmacologia , Nanopartículas Metálicas/química , Plasmídeos/genética , Radiossensibilizantes/farmacologia , Dosagem Radioterapêutica , Simulação por Computador , Relação Dose-Resposta à Radiação , Raios gama , Humanos , Radioisótopos de Irídio/química , Nanopartículas Metálicas/ultraestrutura , Método de Monte Carlo , Espécies Reativas de Oxigênio/metabolismo
17.
Gan To Kagaku Ryoho ; 48(13): 2070-2072, 2021 Dec.
Artigo em Japonês | MEDLINE | ID: mdl-35045496

RESUMO

A 54-year old man diagnosed with rectal cancer underwent laparoscopic high anterior resection with Japanese D3 lymph node dissection. The pathology results were as follows: pT2pN3M0, pStage Ⅲb(Japanese Classification of Colorectal, 8th edition). Adjuvant chemotherapy with CapeOX regimen was administered 8 courses. 1.5 years after the operation, computed tomography(CT)examination revealed a swollen para-aortic lymph node(PALN). Positron emission tomography (PET)-CT revealed PALN with high FDG uptake. We considered that neo-adjuvant chemotherapy and PALN dissection may be possible for PALN, which was isolated metastasis and curative by surgery. After 6 courses of bevacizumab-FOLFIRI therapy was administered, PALN dissection was performed. Pathological examination of the resected specimen showed adenocarcinoma in 4 of the 16 dissected lymph nodes. Histological treatment effect of preoperative therapy was Grade 1b. Postoperatively 6 courses of FOLFIRI were administered. The patient has been followed up for 7 years and 8 months after the first surgery, 5 years and 9 months after the curative resection, with no recurrence showed complete cure. Multidisciplinary treatment with anticancer drug and R0 resection was an effective treatment for isolated PALN recurrence of rectal cancer.


Assuntos
Adenocarcinoma , Neoplasias Retais , Adenocarcinoma/cirurgia , Humanos , Excisão de Linfonodo , Linfonodos/cirurgia , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/cirurgia
18.
Nanotechnol Sci Appl ; 13: 61-76, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848371

RESUMO

PURPOSE: Metal-based nanoparticles (M-NPs) have attracted great attention in nanomedicine due to their capacity to amplify and improve the tumor targeting of medical beams. However, their simple, efficient, high-yield and reproducible production remains a challenge. Currently, M-NPs are mainly synthesized by chemical methods or radiolysis using toxic reactants. The waste of time, loss of material and potential environmental hazards are major limitations. MATERIALS AND METHODS: This work proposes a simple, fast and green strategy to synthesize small, non-toxic and stable NPs in water with a 100% production rate. Ionizing radiation is used to simultaneously synthesize and sterilize the containing NPs solutions. The synthesis of platinum nanoparticles (Pt NPs) coated with biocompatible poly(ethylene glycol) ligands (PEG) is presented as proof of concept. The physicochemical properties of NPs were studied by complementary specialized techniques. Their toxicity and radio-enhancing properties were evaluated in a cancerous in vitro model. Using plasmid nanoprobes, we investigated the elementary mechanisms underpinning radio-enhancement. RESULTS AND DISCUSSION: Pt NPs showed nearly spherical-like shapes and an average hydrodynamic diameter of 9 nm. NPs are zero-valent platinum successfully coated with PEG. They were found non-toxic and have the singular property of amplifying cell killing induced by γ-rays (14%) and even more, the effects of carbon ions (44%) used in particle therapy. They induce nanosized-molecular damage, which is a major finding to potentially implement this protocol in treatment planning simulations. CONCLUSION: This new eco-friendly, fast and simple proposed method opens a new era of engineering water-soluble biocompatible NPs and boosts the development of NP-aided radiation therapies.

19.
Free Radic Biol Med ; 159: 103-106, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32745762

RESUMO

Combining an external beam of ionizing particles with agents to augment the dose effects of cell damages for therapeutic purpose is an important goal of radiotherapy. This last decade intensive works have focused on metal compounds or metal nanoparticles as radiosensitizers to increase the oxidative damages under irradiation. In principle the nanoparticles can be coated with a functionalized shell, to achieve a specific targeting of the tissues, making such approach attractive. The functionalized coating is made of polymers. These molecules are able to scavenge the free radicals, thus, the coating can decrease the overall efficacy of the radiation. The purpose of the present model is to analyse the role of free hydroxyl radicals in the dual behaviour of the added agent. Consideration of the efficiency of the added agents versus the Linear Energy Transfer - LET - of the ionizing particles is made. It is shown that an efficient agent combined with a low-LET particle beams might become less efficient when high-LET particles like heavy-ions are used. These general considerations should be useful to optimize the design of the nanoparticles to be combined with the different kind of ionizing particles.


Assuntos
Sequestradores de Radicais Livres , Íons Pesados , Radicais Livres , Radical Hidroxila , Transferência Linear de Energia
20.
Radiat Res ; 193(6): 513-519, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32216711

RESUMO

D-methionine (D-met), a dextrorotatory isoform of the amino acid L-methionine (L-met), can prevent oral mucositis and salivary hypofunction in mice exposed to radiation. However, the mechanism of its radioprotection is unclear, especially with regard to the stereospecific functions of D-met. Radiation is known to cause injury to normal tissue by triggering DNA damage in cells. Thus, in this study we sought to determine whether the chirality of D-/L-met affects radiation-induced events at the DNA level. We selected plasmid DNA assays to examine this effect in vitro, since these assays are highly sensitive and allow easy detection of DNA damage. Samples of supercoiled pBR322 plasmid DNA mixed with D-met, L-met or dimethylsulfoxide (DMSO) were prepared and irradiated with a Bragg peak beam of carbon ions (∼290 MeV/u) with a 6-cm spread. DNA strand breaks were indicated by the change in the form of the plasmid and were subsequently quantified using agarose gel electrophoresis. We found that D-met yielded approximately equivalent protection from carbon-ion-induced DNA damage as DMSO. Thus, we propose that the protective functions of methionine against plasmid DNA damage could be explained by the same mechanism as that for DMSO, namely, hydroxyl radical scavenging. This stereospecific radioprotective mechanism occurred at a level other than the DNA level. There was no significant difference between the radioprotective effect of D-met and L-met on DNA.


Assuntos
Dano ao DNA , Radioterapia com Íons Pesados/efeitos adversos , Metionina/farmacologia , Plasmídeos/genética , Protetores contra Radiação/farmacologia , Relação Dose-Resposta a Droga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA