Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 85(19): 12359-12366, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32882140

RESUMO

Catechins are found in many foods, including tea. These compounds are bioactive. Previous studies have shown that catechins form dimers on oxidation, and there seem to be distinct regioselective effects. However, the dimerization mechanism and regioselectivity are not well understood. Therefore, we investigated the oxidation of four pyrogallol-type model compounds of epigallocatechin (EGC) having various substituents with 1 equiv of copper chloride and 30% dioxane in water. Compounds having 2C-2C or 2C-4C bonds in the B-ring were obtained in different product ratios. Comparison of the oxidation rates of each compound revealed that the model compounds having an oxygen atom corresponding to the 1-position of the C-ring of EGC underwent slow oxidation. In addition, using density functional theory calculations, we found that the highest occupied molecular orbital energies of these compounds were higher than those of the others. Further, the 2C-2C-bonded oxidation product having an A-ring and an oxygen atom at the C-ring 1-position was confirmed to have the highest thermodynamic stability. From these results, it is suggested that the regioselective condensation reaction of the catechin B-ring is related to interactions between the A-rings, as indicated by earlier studies, and the presence of oxygen at the 1-position of the C-ring in EGC.

2.
J Biol Chem ; 294(28): 11035-11045, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31167785

RESUMO

Lysine N-pyrrolation, converting lysine residues to Nϵ-pyrrole-l-lysine, is a recently discovered post-translational modification. This naturally occurring reaction confers electrochemical properties onto proteins that potentially produce an electrical mimic to DNA and result in specificity toward DNA-binding molecules such as anti-DNA autoantibodies. The discovery of this unique covalent protein modification provides a rationale for establishing the molecular mechanism and broad functional significance of the formation and regulation of Nϵ-pyrrole-l-lysine-containing proteins. In this study, we used microbeads coupled to pyrrolated or nonpyrrolated protein to screen for binding activities of human serum-resident nonimmunoglobin proteins to the pyrrolated proteins. This screen identified apolipoprotein E (apoE) as a protein that innately binds the DNA-mimicking proteins in serum. Using an array of biochemical assays, we observed that the pyrrolated proteins bind to the N-terminal domain of apoE and that oligomeric apoE binds these proteins better than does monomeric apoE. Employing surface plasmon resonance and confocal microscopy, we further observed that apoE deficiency leads to significant accumulation of pyrrolated serum albumin and is associated with an enhanced immune response. These results, along with the observation that apoE facilitates the binding of pyrrolated proteins to cells, suggest that apoE may contribute to the clearance of pyrrolated serum proteins. Our findings uncover apoE as a binding target of pyrrolated proteins, providing a key link connecting covalent protein modification, lipoprotein metabolism, and innate immunity.


Assuntos
Apolipoproteínas E/metabolismo , Mimetismo Molecular/fisiologia , Pirróis/metabolismo , Adulto , Sequência de Aminoácidos/genética , Animais , Apolipoproteína E3/sangue , Apolipoproteína E3/metabolismo , Apolipoproteína E4/sangue , Apolipoproteína E4/metabolismo , Apolipoproteínas E/sangue , Apolipoproteínas E/fisiologia , Fenômenos Biofísicos , DNA/genética , DNA/metabolismo , Feminino , Humanos , Hiperlipidemias/metabolismo , Cinética , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína/fisiologia , Proteínas/metabolismo , Pirróis/química
3.
Biochemistry ; 55(3): 435-46, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26731343

RESUMO

Advanced glycation end products (AGEs) make up a heterogeneous group of molecules formed from the nonenzymatic reaction of reducing sugars with the free amino groups of proteins. The abundance of AGEs in a variety of age-related diseases, including diabetic complications and atherosclerosis, and their pathophysiological effects suggest the existence of innate defense mechanisms. Here we examined the presence of serum proteins that are capable of binding glycated bovine serum albumin (AGEs-BSA), prepared upon incubation of BSA with dehydroascorbate, and identified complement component C1q subcomponent subunit A as a novel AGE-binding protein in human serum. A molecular interaction analysis showed the specific binding of C1q to the AGEs-BSA. In addition, we identified DNA-binding regions of C1q, including a collagen-like domain, as the AGE-binding site and established that the amount of positive charge on the binding site was the determining factor. C1q indeed recognized several other modified proteins, including acylated proteins, suggesting that the binding specificity of C1q might be ascribed, at least in part, to the electronegative potential of the ligand proteins. We also observed that C1q was involved in the AGEs-BSA-activated deposition of complement proteins, C3b and C4b. In addition, the AGEs-BSA mediated the proteolytic cleavage of complement protein 5 to release C5a. These findings provide the first evidence of AGEs as a new ligand recognized by C1q, stimulating the C1q-dependent classical complement pathway.


Assuntos
Complemento C1q/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Bovinos , Complemento C3b/metabolismo , Complemento C4b/metabolismo , Complemento C5a/metabolismo , Via Clássica do Complemento , Ácido Desidroascórbico/metabolismo , Eletricidade , Humanos , Dados de Sequência Molecular , Ligação Proteica , Subunidades Proteicas/metabolismo , Soro , Soroalbumina Bovina/metabolismo
4.
J Agric Food Chem ; 64(1): 204-9, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26651358

RESUMO

The molecular mechanism by which tea polyphenols decrease the micellar solubility of cholesterol is not completely clear. To clarify this mechanism, this study investigated the interaction between tea polyphenols (catechins and oolongtheanins) and cholesterol micelles. A nuclear magnetic resonance (NMR) study was performed on a micellar solution containing taurocholic acid and epigallocatechin gallate (EGCg), and high-performance liquid chromatography (HPLC) analysis was carried out on the precipitate and the supernatant that formed when EGCg was added to a cholesterol-micelle solution. The data indicated a regiospecific interaction of EGCg with taurocholic acid. Therefore, the ability of EGCg to lower the solubility of phosphatidylcholine (PC) and cholesterol in micellar solutions can be attributed to their elimination from the micelles due to interaction between taurocholic acids and EGCg.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Polifenóis/metabolismo , Chá/metabolismo , Ácidos e Sais Biliares/química , Colesterol/química , Humanos , Micelas , Polifenóis/química , Solubilidade
5.
Bioorg Med Chem Lett ; 25(4): 749-52, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25619638

RESUMO

The synthesis of oolongtheanins (1a-d) was accomplished from EGC and/or EGCg in three steps. Oolongtheanin-3'-O-gallate (1b) showed more potent inhibitory activity on micellar cholesterol solubility than did EGCg.


Assuntos
Benzopiranos/química , Catequina/química , Colesterol/química , Polifenóis/química , Benzopiranos/síntese química , Camellia sinensis/química , Técnicas In Vitro , Micelas , Polifenóis/síntese química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA