Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life Sci Space Res (Amst) ; 40: 176-185, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245343

RESUMO

Space agencies are developing Bioregenerative Life Support Systems (BLSS) in view of upcoming long-term crewed space missions. Most of these BLSS plan to include various crops to produce different types of foods, clean water, and O2 while capturing CO2 from the atmosphere. However, growing these plants will require the appropriate addition of nutrients in forms that are available. As shipping fertilizers from Earth would be too costly, it will be necessary to use waste-derived nutrients. Using the example of the MELiSSA (Micro-Ecological Life Support System Alternative) loop of the European Space Agency, this paper reviews what should be considered so that nutrients recycled from waste streams could be used by plants grown in a hydroponic system. Whereas substantial research has been conducted on nitrogen and phosphorus recovery from human urine, much work remains to be done on recovering nutrients from other liquid and solid organic waste. It is essential to continue to study ways to efficiently remove sodium and chloride from urine and other organic waste to prevent the spread of these elements to the rest of the MELiSSA loop. A full nitrogen balance at habitat level will have to be achieved; on one hand, sufficient N2 will be needed to maintain atmospheric pressure at a proper level and on the other, enough mineral nitrogen will have to be provided to the plants to ensure biomass production. From a plant nutrition point of view, we will need to evaluate whether the flux of nutrients reaching the hydroponic system will enable the production of nutrient solutions able to sustain a wide variety of crops. We will also have to assess the nutrient use efficiency of these crops and how that efficiency might be increased. Techniques and sensors will have to be developed to grow the plants, considering low levels or the total absence of gravity, the limited volume available to plant growth systems, variations in plant needs, the recycling of nutrient solutions, and eventually the ultimate disposal of waste that can no longer be used.


Assuntos
Sistemas Ecológicos Fechados , Humanos , Sistemas de Manutenção da Vida , Nutrientes , Produtos Agrícolas , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA