Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(20): e2210993, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36863399

RESUMO

The ability to significantly change the mechanical and wave propagation properties of a structure without rebuilding it is currently one of the main challenges in the field of mechanical metamaterials. This stems from the enormous appeal that such tunable behavior may offer from the perspective of applications ranging from biomedical to protective devices, particularly in the case of micro-scale systems. In this work, a novel micro-scale mechanical metamaterial is proposed that can undergo a transition from one type of configuration to another, with one configuration having a very negative Poisson's ratio, corresponding to strong auxeticity, and the other having a highly positive Poisson's ratio. The formation of phononic band gaps can also be controlled concurrently which can be very useful for the design of vibration dampers and sensors. Finally, it is experimentally shown that the reconfiguration process can be induced and controlled remotely through application of a magnetic field by using appropriately distributed magnetic inclusions.

2.
J Chem Phys ; 156(17): 174104, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525670

RESUMO

Flexoelectricity is an electromechanical coupling phenomenon that can generate noticeable electric polarization in dielectric materials for nanoscale strain gradients. It is gaining increasing attention because of its potential applications and the fact that experimental results were initially an order of magnitude higher than initial theoretical predictions. This stimulated intense experimental and theoretical research to investigate flexoelectric coefficients in dielectric materials such as two-dimensional materials. In this study, we concentrate on the calculation of the flexoelectric coefficients of 2D-MoS2 due to a model using self-consistently determined charges and dipoles on the atoms. More specifically, we study the importance of two contributions that were neglected/omitted in previous papers using this model, namely, the charge term in the total polarization and the conservation of electric charge through a Lagrange multiplier. Our calculations demonstrate that the results for flexoelectric coefficients computed with this improved definition of polarization agree better with experimental measurements, provided that consistent definitions for signs are used. Additionally, we show how two physical contributions with opposite signs compete to give net values of flexoelectric coefficients that can be either positive or negative depending on their relative importance and give net values for the case of MoS2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA