Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Autophagy ; 16(7): 1248-1261, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31476975

RESUMO

The trabecular meshwork (TM) is a key regulatory tissue of intraocular pressure (IOP) in the anterior chamber of eye. Dysfunction of the TM causes resistance to outflow of aqueous humor, which in turn leads to elevated IOP, a main risk factor of glaucomatous neurodegeneration. Due to variations in IOP, TM cells are continuously exposed to mechanical deformations. We previously reported activation of macroautophagy/autophagy, as one of the physiological responses elicited in TM cells following mechanical strain application. By using biochemical fractionation analysis and imaging techniques, we demonstrate here for the first time the nuclear accumulation of the autophagic marker MAP1LC3/LC3 (microtubule associated protein1 light chain 3)-II, endogenous and exogenously added (AdGFP-LC3, AdtfLC3), in response to cyclic mechanical stress (CMS). Wheat germ agglutinin (WGA) and leptomycin B treatment suggest LC3 to enter the nucleus by passive diffusion, but to exit in an XPO1/CRM1 (exportin 1)-dependent manner in human TM (hTM) cells. While blockage of nuclear export leads to accumulation of LC3 with promyelocytic leukemia (PML) bodies, nuclear LC3 localizes in the nucleolus in cells under CMS. Moreover, nuclear LC3 co-immunoprecipitated with NUFIP1, a ribosome receptor for starvation-induced ribophagy. More interestingly, we further demonstrate that NUFIP1 translocates from the nucleus to LAMP2 (lysosomal associated membrane protein 2)-positive organelles in the stretched cells without triggering ribophagy, suggesting a more general role of NUFIP1 as a selective autophagy receptor for another yet-to-be-identified target in CMS and a surveillance role of nuclear LC3 against stretch-induced damage. ABBREVIATION: AdGFP: adenovirus encoding GFP; ATG: autophagy-related; BSA: bovine serum albumin; CMS: cyclic mechanical stretch; Co-IP: coimmunoprecipitation; DAPI: 4',6-diamidino-2-phenylindole; DFCs: dense fibrillar components; EM: electron microscopy; FCs: fibrillar centers; GCs: granular components; GFP: green fluorescent protein; hTM: human trabecular meshwork; HBSS: Hanks balanced salt solution; IOP: intraocular pressure; LAMP1/2: lysosomal associated membrane protein 1/2; LepB: leptomycin B; MTOR: mechanistic target of rapamacyin kinase; NES: nuclear export signals; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NLS: nuclear localization signal; NPCs: nuclear pore complexes; NUFIP1: nuclear FMR1 interacting protein 1; NS: non-stretched; PBS: phosphate-buffered saline; PE: phosphatidylethanolamine; pfu: plaque-forming units; PML: promyelocytic leukemia; RFP: red fluorescent protein; RPS15A: ribosomal protein S15a; RPL26: ribosomal protein L26; rRNA: ribosomal RNA; SIRT1: sirtuin 1; SQSTM1/p62: sequestosome 1; tfLC3: mRFP-GFP tandem fluorescent-tagged LC3; TM: trabecular meshwork; WB: western blot; WDR36: WD repeat domain 36; WGA: wheat germ agglutinin; XPO1/CRM1: exportin 1.


Assuntos
Autofagia , Nucléolo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Estresse Mecânico , Animais , Autofagossomos/metabolismo , Citosol/metabolismo , Humanos , Carioferinas/metabolismo , Camundongos , Modelos Biológicos , Células NIH 3T3 , Ligação Proteica , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/metabolismo , Sirtuína 1/metabolismo , Malha Trabecular/metabolismo , Malha Trabecular/ultraestrutura , Proteína Exportina 1
2.
Cell Death Discov ; 4: 14, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210817

RESUMO

Glaucoma is a progressive optic neuropathy characterized by axonal degeneration and retinal ganglion cells loss. Several factors have been postulated to play a role in glaucoma, elevated intraocular pressure (IOP) being the best well-known causative factor. The mechanisms leading to ocular hypertension and glaucoma are still not fully understood. An increasing number of evidence indicates a role of autophagy in the pathophysiological process of ocular hypertension and glaucoma. However, while all of the studies agree that autophagy is induced in RGCs in response to injury, autophagy was found to either protect or promote cell death depending on the experimental model used. In order to gain more insight into both, the role of autophagy in the pathogenesis of glaucoma and the effect of chronic IOP elevation in the autophagy pathway, we have investigated here for the first time autophagy in the iridocorneal angle region, retinal ganglion cell bodies, and ON axons in the spontaneous ocular hypertensive DBA/2J mouse glaucoma model and in the transgenic DBA/2J::GFP-LC3 mice, generated in our laboratory. Our results indicate decreased autophagic flux in the outflow pathway cells in the DBA/2J mice, characterized by increased levels of LC3-II and p62 together with a decrease in the lysosomal marker LAMP1, evaluated by western blot and immunofluorescence. Elevated presence of autophagic vacuoles in the DBA/2J and, in particular, in the DBA/2J::GFP-LC3 mice was also observed. Expression of the GFP-LC3 transgene was associated to higher cumulative IOP in the DBA/2J background. In addition to higher elevation in IOP, DBA/2J::GFP-LC3 were characterized by further RGCs and exacerbated axonal degeneration compared to DBA/2J. This was accompanied by the notable high presence of autophagic figures within degenerating axons. These results strongly suggest overactivation of autophagy as a potential cellular mechanism leading to ON degeneration in the chronic hypertensive DBA/2J mice.

3.
Exp Eye Res ; 158: 146-153, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27373974

RESUMO

Because of elevations in IOP and other forces, cells in the trabecular meshwork (TM) are constantly subjected to mechanical strain. In order to preserve cellular function and regain homeostasis, cells must sense and adapt to these morphological changes. We and others have already shown that mechanical stress can trigger a broad range of responses in TM cells; however, very little is known about the strategies that TM cells use to respond to this stress, so they can adapt and survive. Autophagy, a lysosomal degradation pathway, has emerged as an important cellular homeostatic mechanism promoting cell survival and adaptation to a number of cytotoxic stresses. Our laboratory has reported the activation of autophagy in TM cells in response to static biaxial strain and high pressure. Moreover, our newest data also suggest the activation of chaperon-assisted selective autophagy, a recently identified tension-induced autophagy essential for mechanotransduction, in TM cells under cyclic mechanical stress. In this review manuscript we will discuss autophagy as part of an integrated response triggered in TM cells in response to strain, exerting a dual role in repair and mechanotransduction, and the potential effects of dysregulated in outflow pathway pathophysiology.


Assuntos
Humor Aquoso/metabolismo , Autofagia/fisiologia , Mecanotransdução Celular/fisiologia , Malha Trabecular/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Humanos , Pressão Intraocular , Estresse Mecânico
4.
Biochim Biophys Acta ; 1852(3): 379-85, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25483712

RESUMO

Primary open angle glaucoma (POAG) is a degenerative disease commonly associated with aging and elevated intraocular pressure (IOP). Higher resistance to aqueous humor (AH) outflow through the trabecular meshwork (TM) generates the elevated IOP in POAG; unfortunately the underlying molecular mechanisms responsible for elevated resistance are unknown. It is widely accepted, however, that differences between normal and POAG TM tissues are presumably a consequence of cellular dysfunction. Here, we investigated the autophagic function and response to chronic oxidative stress in TM cells isolated from glaucomatous and age-matched donor eyes. Glaucomatous TM cells showed elevated senescence-associated-beta-galactosidase (SA-ß-Gal) and cellular lipofuscin, together with decreased steady-state levels of LC3B-II, decreased levels of pRPS6K-T389 and reduced proteolysis of long-live proteins. Moreover, the glaucomatous cultures failed to activate autophagy when exposed to hyperoxic conditions. These results strongly suggest mTOR-dependent dysregulation of the autophagic pathway in cells isolated from the glaucomatous TM. Such dysregulated autophagic capacity can have a detrimental impact in outflow pathway tissue, i.e. mechanotransduction, and thus represent an important factor contributing to the progression of the disease.


Assuntos
Autofagia , Proteínas do Olho/metabolismo , Glaucoma de Ângulo Aberto/metabolismo , Estresse Oxidativo , Proteólise , Malha Trabecular/metabolismo , Células Cultivadas , Glaucoma de Ângulo Aberto/patologia , Humanos , Pressão Intraocular , Malha Trabecular/patologia
5.
Nat Neurosci ; 16(8): 1000-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23817546

RESUMO

The construction of cerebral cortex begins with the formation of radial glia. Once formed, polarized radial glial cells divide either symmetrically or asymmetrically to balance appropriate production of progenitor cells and neurons. Following birth, neurons use the processes of radial glia as scaffolding for oriented migration. Radial glia therefore provide an instructive structural matrix to coordinate the generation and placement of distinct groups of cortical neurons in the developing cerebral cortex. We found that Arl13b, a cilia-enriched small GTPase that is mutated in Joubert syndrome, was critical for the initial formation of the polarized radial progenitor scaffold. Using developmental stage-specific deletion of Arl13b in mouse cortical progenitors, we found that early neuroepithelial deletion of ciliary Arl13b led to a reversal of the apical-basal polarity of radial progenitors and aberrant neuronal placement. Arl13b modulated ciliary signaling necessary for radial glial polarity. Our findings indicate that Arl13b signaling in primary cilia is crucial for the initial formation of a polarized radial glial scaffold and suggest that disruption of this process may contribute to aberrant neurodevelopment and brain abnormalities in Joubert syndrome-related ciliopathies.


Assuntos
Fatores de Ribosilação do ADP/fisiologia , Cílios/enzimologia , Proteínas do Tecido Nervoso/fisiologia , Neurogênese/fisiologia , Neuroglia/ultraestrutura , Fatores de Ribosilação do ADP/deficiência , Fatores de Ribosilação do ADP/genética , Anormalidades Múltiplas , Animais , Axonema/ultraestrutura , Divisão Celular , Polaridade Celular , Doenças Cerebelares/enzimologia , Doenças Cerebelares/genética , Doenças Cerebelares/patologia , Cerebelo/anormalidades , Córtex Cerebral/anormalidades , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Ventrículos Cerebrais/anormalidades , Cílios/fisiologia , Epitélio/ultraestrutura , Anormalidades do Olho/enzimologia , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Humanos , Doenças Renais Císticas/enzimologia , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/ultraestrutura , Neurogênese/genética , Neuroglia/fisiologia , Retina/anormalidades , Retina/enzimologia , Retina/patologia , Telencéfalo/embriologia , Telencéfalo/ultraestrutura
6.
Dev Cell ; 23(5): 925-38, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23153492

RESUMO

Coordinated migration and placement of interneurons and projection neurons lead to functional connectivity in the cerebral cortex; defective neuronal migration and the resultant connectivity changes underlie the cognitive defects in a spectrum of neurological disorders. Here we show that primary cilia play a guiding role in the migration and placement of postmitotic interneurons in the developing cerebral cortex and that this process requires the ciliary protein, Arl13b. Through live imaging of interneuronal cilia, we show that migrating interneurons display highly dynamic primary cilia and we correlate cilia dynamics with the interneuron's migratory state. We demonstrate that the guidance cue receptors essential for interneuronal migration localize to interneuronal primary cilia, but their concentration and dynamics are altered in the absence of Arl13b. Expression of Arl13b variants known to cause Joubert syndrome induce defective interneuronal migration, suggesting that defects in cilia-dependent interneuron migration may in part underlie the neurological defects in Joubert syndrome patients.


Assuntos
Fatores de Ribosilação do ADP/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Cílios/fisiologia , Interneurônios/fisiologia , Fatores de Ribosilação do ADP/deficiência , Fatores de Ribosilação do ADP/genética , Anormalidades Múltiplas , Animais , Movimento Celular/fisiologia , Doenças Cerebelares/etiologia , Doenças Cerebelares/patologia , Doenças Cerebelares/fisiopatologia , Cerebelo/anormalidades , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Anormalidades do Olho/etiologia , Anormalidades do Olho/patologia , Anormalidades do Olho/fisiopatologia , Humanos , Doenças Renais Císticas/etiologia , Doenças Renais Císticas/patologia , Doenças Renais Císticas/fisiopatologia , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/genética , Proteínas Mutantes/fisiologia , Retina/anormalidades , Retina/patologia , Retina/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA