Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 136(4): 94, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010621

RESUMO

KEY MESSAGE: Barley double mutants in two genes involved in starch granule morphology, HvFLO6 and HvISA1, had impaired starch accumulation and higher grain sugar levels than either single mutant. Starch is a biologically and commercially important glucose polymer synthesized by plants as semicrystalline starch granules (SGs). Because SG morphology affects starch properties, mutants with altered SG morphology may be useful in breeding crops with desirable starch properties, including potentially novel properties. In this study, we employed a simple screen for mutants with altered SG morphology in barley (Hordeum vulgare). We isolated mutants that formed compound SGs together with the normal simple SGs in the endosperm and found that they were allelic mutants of the starch biosynthesis genes ISOAMYLASE1 (HvISA1) and FLOURY ENDOSPERM 6 (HvFLO6), encoding starch debranching enzyme and CARBOHYDRATE-BINDING MODULE 48-containing protein, respectively. We generated the hvflo6 hvisa1 double mutant and showed that it had significantly reduced starch biosynthesis and developed shrunken grains. In contrast to starch, soluble α-glucan, phytoglycogen, and sugars accumulated to higher levels in the double mutant than in the single mutants. In addition, the double mutants showed defects in SG morphology in the endosperm and in the pollen. This novel genetic interaction suggests that hvflo6 acts as an enhancer of the sugary phenotype caused by hvisa1 mutation.


Assuntos
Hordeum , Oryza , Endosperma/genética , Endosperma/metabolismo , Hordeum/genética , Açúcares , Melhoramento Vegetal , Amido/metabolismo , Glucanos/metabolismo , Fenótipo , Mutação , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Pathogens ; 12(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36986280

RESUMO

Many aphid-borne viruses are important pathogens that affect wheat crops worldwide. An aphid-transmitted closterovirus named wheat yellow leaf virus (WYLV) was found to have infected wheat plants in Japan in the 1970s; however, since then, its viral genome sequence and occurrence in the field have not been investigated. We observed yellowing leaves in the 2018/2019 winter wheat-growing season in an experimental field in Japan where WYLV was detected five decades ago. A virome analysis of those yellow leaf samples lead to the discovery of a closterovirus together with a luteovirus (barley yellow dwarf virus PAV variant IIIa). The complete genomic sequence of this closterovirus, named wheat closterovirus 1 isolate WL19a (WhCV1-WL19a), consisted of 15,452 nucleotides harboring nine open reading frames. Additionally, we identified another WhCV1 isolate, WL20, in a wheat sample from the winter wheat-growing season of 2019/2020. A transmission test indicated that WhCV1-WL20 was able to form typical filamentous particles and transmissible by oat bird-cherry aphid (Rhopalosiphum pad). Sequence and phylogenetic analyses showed that WhCV1 was distantly related to members of the genus Closterovirus (family Closteroviridae), suggesting that the virus represents a novel species in the genus. Furthermore, the characterization of WhCV1-WL19a-derived small RNAs using high-throughput sequencing revealed highly abundant 22-nt-class small RNAs potentially derived from the 3'-terminal end of the WhCV1 negative-strand genomic RNA, indicating that this terminal end of the WhCV1 genome is likely particularly targeted for the synthesis of viral small RNAs in wheat plants. Our results provide further knowledge on closterovirus diversity and pathogenicity and suggest that the impact of WhCV1 on wheat production warrants further investigations.

3.
Plant Biotechnol (Tokyo) ; 40(3): 237-245, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-38420565

RESUMO

Genome editing is a promising method for simultaneously mutagenizing homoeologs in the three subgenomes of wheat (Triticum aestivum L.). However, the mutation rate via genome editing must be improved in order to analyze gene function and to quickly modify agronomic traits in wheat. Here, we examined the Cas9-induced mutation rates in wheat plants using two promoters for single guide RNA (sgRNA) expression and applying heat treatment during Agrobacterium tumefaciens-mediated transformation. Using the TaU6 promoter instead of the OsU6 promoter from rice (Oryza sativa L.) to drive sgRNA expression greatly improved the Cas9-induced mutation rate. Moreover, a heat treatment of 30°C for 1 day during tissue culture increased the Cas9-induced mutation rate and the variety of mutations obtained compared to tissue culture at the normal temperature (25°C). The same heat treatment did not affect the regeneration rates of transgenic plants but tended to increase the number of transgene integration sites in each transgenic plant. These results lay the foundation for improving the Cas9-induced mutation rate in wheat to enhance research on gene function and crop improvement.

4.
AoB Plants ; 14(3): plac019, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35669443

RESUMO

Barley (Hordeum vulgare) is the fourth most highly produced cereal in the world after wheat, rice and maize and is mainly utilized as malts and for animal feed. Barley, a model crop of the tribe Triticeae, is important in comparative analyses of Poaceae. However, molecular understanding about the developmental processes is limited in barley. Our previous work characterized one of two WUSCHEL-RELATED HOMEOBOX 3 (WOX3) genes present in the barley genome: NARROW LEAFED DWARF1 (NLD1). We demonstrated that NLD1 plays a pivotal role in the development of lateral organs. In the present study, we describe a bifurcated palea (bip) mutant of barley focusing on flower and leaf phenotypes. The palea in the bip mutant was split into two and develop towards inside the lemma surrounding the carpels and anthers. The bip mutant is devoid of lodicules, which develop in a pair at the base of the stamen within the lemma in normal barley. bip also exhibited malformations in leaves, such as narrow leaf due to underdeveloped leaf-blade width, and reduced trichome density. Map-based cloning and expression analysis indicated that BIP is identical to another barley WOX3 gene, named HvWOX3. The bip nld1 double mutant presented a more severe reduction in leaf-blade width and number of trichomes. By comparing the phenotypes and gene expression patterns of various WOX3 mutants, we concluded that leaf bilateral outgrowth and trichome development are promoted by both NLD1 and HvWOX3, but that HvWOX3 serves unique and pivotal functions in barley development that differ from those of NLD1.

5.
New Phytol ; 234(4): 1249-1261, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218012

RESUMO

Grains are the major sink of phosphorus (P) in cereal crops, accounting for 60-85% of total plant P, but the mechanisms underlying P loading into the grains are poorly understood. We functionally characterized a transporter gene required for the distribution of P to the grains in barley (Hordeum vulgare), HvSPDT (SULTR-like phosphorus distribution transporter). HvSPDT encoded a plasma membrane-localized Pi/H+ cotransporter. It was mainly expressed in the nodes at both the vegetative and reproductive stages. Furthermore, its expression was induced by inorganic phosphate (Pi) deficiency. In the nodes, HvSPDT was expressed in both the xylem and phloem region of enlarged and diffuse vascular bundles. Knockout of HvSPDT decreased the distribution of P to new leaves, but increased the distribution to old leaves at the vegetative growth stage under low P supply. However, knockout of HvSPDT did not alter the redistribution of P from old to young organs. At the reproductive stage, knockout of HvSPDT significantly decreased P allocation to the grains, resulting in a considerable reduction in grain yield, especially under P-limited conditions. Our results indicate that node-based HvSPDT plays a crucial role in loading P into barley grains through preferentially distributing P from the xylem and further to the phloem.


Assuntos
Hordeum , Grão Comestível , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Plant Biotechnol J ; 20(1): 37-46, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34459083

RESUMO

High humidity during harvest season often causes pre-harvest sprouting in barley (Hordeum vulgare). Prolonged grain dormancy prevents pre-harvest sprouting; however, extended dormancy can interfere with malt production and uniform germination upon sowing. In this study, we used Cas9-induced targeted mutagenesis to create single and double mutants in QTL FOR SEED DORMANCY 1 (Qsd1) and Qsd2 in the same genetic background. We performed germination assays in independent qsd1 and qsd2 single mutants, as well as in two double mutants, which revealed a strong repression of germination in the mutants. These results demonstrated that normal early grain germination requires both Qsd1 and Qsd2 function. However, germination of qsd1 was promoted by treatment with 3% hydrogen peroxide, supporting the notion that the mutants exhibit delayed germination. Likewise, exposure to cold temperatures largely alleviated the block of germination in the single and double mutants. Notably, qsd1 mutants partially suppress the long dormancy phenotype of qsd2, while qsd2 mutant grains failed to germinate in the light, but not in the dark. Consistent with the delay in germination, abscisic acid accumulated in all mutants relative to the wild type, but abscisic acid levels cannot maintain long-term dormancy and only delay germination. Elucidation of mutant allele interactions, such as those shown in this study, are important for fine-tuning traits that will lead to the design of grain dormancy through combinations of mutant alleles. Thus, these mutants will provide the necessary germplasm to study grain dormancy and germination in barley.


Assuntos
Hordeum , Ácido Abscísico/farmacologia , Germinação/genética , Hordeum/genética , Mutagênese/genética , Dormência de Plantas/genética , Locos de Características Quantitativas/genética , Sementes/genética
7.
Breed Sci ; 71(4): 405-416, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34912167

RESUMO

The recent advent of customizable endonucleases has led to remarkable advances in genetic engineering, as these molecular scissors allow for the targeted introduction of mutations or even precisely predefined genetic modifications into virtually any genomic target site of choice. Thanks to its unprecedented precision, efficiency, and functional versatility, this technology, commonly referred to as genome editing, has become an effective force not only in basic research devoted to the elucidation of gene function, but also for knowledge-based improvement of crop traits. Among the different platforms currently available for site-directed genome modifications, RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) endonucleases have proven to be the most powerful. This review provides an application-oriented overview of the development of customizable endonucleases, current approaches to cereal crop breeding, and future opportunities in this field.

8.
Front Microbiol ; 12: 715545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489904

RESUMO

Yellow mosaic disease in winter wheat is usually attributed to the infection by bymoviruses or furoviruses; however, there is still limited information on whether other viral agents are also associated with this disease. To investigate the wheat viromes associated with yellow mosaic disease, we carried out de novo RNA sequencing (RNA-seq) analyses of symptomatic and asymptomatic wheat-leaf samples obtained from a field in Hokkaido, Japan, in 2018 and 2019. The analyses revealed the infection by a novel betaflexivirus, which tentatively named wheat virus Q (WVQ), together with wheat yellow mosaic virus (WYMV, a bymovirus) and northern cereal mosaic virus (a cytorhabdovirus). Basic local alignment search tool (BLAST) analyses showed that the WVQ strains (of which there are at least three) were related to the members of the genus Foveavirus in the subfamily Quinvirinae (family Betaflexiviridae). In the phylogenetic tree, they form a clade distant from that of the foveaviruses, suggesting that WVQ is a member of a novel genus in the Quinvirinae. Laboratory tests confirmed that WVQ, like WYMV, is potentially transmitted through the soil to wheat plants. WVQ was also found to infect rye plants grown in the same field. Moreover, WVQ-derived small interfering RNAs accumulated in the infected wheat plants, indicating that WVQ infection induces antiviral RNA silencing responses. Given its common coexistence with WYMV, the impact of WVQ infection on yellow mosaic disease in the field warrants detailed investigation.

9.
PLoS One ; 16(8): e0256574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34424930

RESUMO

Loss-of-function mutation of the MILDEW RESISTANCE LOCUS O (Mlo) gene confers durable and broad-spectrum resistance to powdery mildew fungi in various plants, including barley. In combination with the intracellular nucleotide-binding domain and leucine-rich repeat receptor (NLR) genes, which confer the race-specific resistance, the mlo alleles have long been used in barley breeding as genetic resources that confer robust non-race-specific resistance. However, a Japanese Blumeria graminis f. sp. hordei isolate, RACE1, has been reported to have the potential to overcome partially the mlo-mediated penetration resistance, although this is yet uncertain because the putative effects of NLR genes in the tested accessions have not been ruled out. In this study, we examined the reproducibility of the earlier report and found that the infectious ability of RACE1, which partially overcomes the mlo-mediated resistance, is only exerted in the absence of NLR genes recognizing RACE1. Furthermore, using the transient-induced gene silencing technique, we demonstrated that RACE1 can partially overcome the resistance in the host cells with suppressed MLO expression but not in plants possessing the null mutant allele mlo-5.


Assuntos
Ascomicetos , Alelos , Resistência à Doença , Hordeum , Japão , Reprodutibilidade dos Testes
10.
Methods Mol Biol ; 2287: 199-214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270031

RESUMO

In plant research and breeding, haploid technology is employed upon crossing, induced mutagenesis or genetic engineering to generate populations of meiotic recombinants that are themselves genetically fixed. Thanks to the speed and efficiency in producing true-breeding lines, haploid technology has become a major driver of modern crop improvement. In the present study, we used embryogenic pollen cultures of winter barley ( Hordeum vulgare ) for Cas9 endonuclease-mediated targeted mutagenesis in haploid cells, which facilitates the generation of homozygous primary mutant plants. To this end, microspores were extracted from immature anthers, induced to undergo cell proliferation and embryogenic development in vitro, and were then inoculated with Agrobacterium for the delivery of T-DNAs comprising expression units for Cas9 endonuclease and target gene-specific guide RNAs (gRNAs). Amongst the regenerated plantlets, mutants were identified by PCR amplification of the target regions followed by sequencing of the amplicons. This approach also enabled us to discriminate between homozygous and heterozygous or chimeric mutants. The heritability of induced mutations and their homozygous state were experimentally confirmed by progeny analyses. The major advantage of the method lies in the preferential production of genetically fixed primary mutants, which facilitates immediate phenotypic analyses and, relying on that, a particularly efficient preselection of valuable lines for detailed investigations using their progenies.


Assuntos
Endonucleases/metabolismo , Haploidia , Hordeum/crescimento & desenvolvimento , Hordeum/genética , Mutagênese Sítio-Dirigida/métodos , Melhoramento Vegetal/métodos , RNA Guia de Cinetoplastídeos/genética , Sistemas CRISPR-Cas , Meios de Cultura , Endonucleases/genética , Edição de Genes , Engenharia Genética , Genoma de Planta , Homozigoto , Hordeum/embriologia , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/crescimento & desenvolvimento
11.
Front Plant Sci ; 12: 648841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790930

RESUMO

Limitations for the application of genome editing technologies on elite wheat (Triticum aestivum L.) varieties are mainly due to the dependency on in vitro culture and regeneration capabilities. Recently, we developed an in planta particle bombardment (iPB) method which has increased process efficiency since no culture steps are required to create stably genome-edited wheat plants. Here, we report the application of the iPB method to commercially relevant Japanese elite wheat varieties. The biolistic delivery of gold particles coated with plasmids expressing CRISPR/Cas9 components designed to target TaQsd1 were bombarded into the embryos of imbibed seeds with their shoot apical meristem (SAM) exposed. Mutations in the target gene were subsequently analyzed within flag leaf tissue by using cleaved amplified polymorphic sequence (CAPS) analysis. A total of 9/358 (2.51%) of the bombarded plants (cv. "Haruyokoi," spring type) carried mutant alleles in the tissue. Due to the chimeric nature of the T0 plants, only six of them were inherited to the next (T1) generation. Genotypic analysis of the T2 plants revealed a single triple-recessive homozygous mutant of the TaQsd1 gene. Compared to wild type, the homozygous mutant exhibited a 7 days delay in the time required for 50% seed germination. The iPB method was also applied to two elite winter cultivars, "Yumechikara" and "Kitanokaori," which resulted in successful genome editing at slightly lower efficiencies as compared to "Haruyokoi." Taken together, this report demonstrates that the in planta genome editing method through SAM bombardment can be applicable to elite wheat varieties that are otherwise reluctant to callus culture.

12.
STAR Protoc ; 1(2): 100053, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-33111098

RESUMO

Here, we describe a protocol for producing multiple recessive mutants via genome editing in hexaploid wheat (Triticum aestivum) cv. Fielder. Using Agrobacterium-delivered CRISPR/Cas9 and three sub-genome-specific primer sets, all possible combinations of single, double, and triple transgene-free mutants can be generated. The technique for acceleration of generation advancement with embryo culture reduces time for mutant production. The mutants produced by this protocol can be used for the analysis of gene function and crop improvement. For complete details on the use and execution of this protocol, please refer to Abe et al. (2019).


Assuntos
Edição de Genes/métodos , Genoma de Planta/genética , Mutação/genética , Melhoramento Vegetal/métodos , Triticum/genética , Sistemas CRISPR-Cas/genética
13.
Nature ; 584(7819): 109-114, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32669710

RESUMO

The size of plants is largely determined by growth of the stem. Stem elongation is stimulated by gibberellic acid1-3. Here we show that internode stem elongation in rice is regulated antagonistically by an 'accelerator' and a 'decelerator' in concert with gibberellic acid. Expression of a gene we name ACCELERATOR OF INTERNODE ELONGATION 1 (ACE1), which encodes a protein of unknown function, confers cells of the intercalary meristematic region with the competence for cell division, leading to internode elongation in the presence of gibberellic acid. By contrast, upregulation of DECELERATOR OF INTERNODE ELONGATION 1 (DEC1), which encodes a zinc-finger transcription factor, suppresses internode elongation, whereas downregulation of DEC1 allows internode elongation. We also show that the mechanism of internode elongation that is mediated by ACE1 and DEC1 is conserved in the Gramineae family. Furthermore, an analysis of genetic diversity suggests that mutations in ACE1 and DEC1 have historically contributed to the selection of shorter plants in domesticated populations of rice to increase their resistance to lodging, and of taller plants in wild species of rice for adaptation to growth in deep water. Our identification of these antagonistic regulatory factors enhances our understanding of the gibberellic acid response as an additional mechanism that regulates internode elongation and environmental fitness, beyond biosynthesis and gibberellic acid signal transduction.


Assuntos
Giberelinas/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Aclimatação , Mutação , Oryza/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Locos de Características Quantitativas , Transdução de Sinais
14.
Front Microbiol ; 11: 509, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32318034

RESUMO

Aphids (order Hemiptera) are important insect pests of crops and are also vectors of many plant viruses. However, little is known about aphid-infecting viruses, particularly their diversity and relationship to plant viruses. To investigate the aphid viromes, we performed deep sequencing analyses of the aphid transcriptomes from infested barley plants in a field in Japan. We discovered virus-like sequences related to nege/kita-, flavi-, tombus-, phenui-, mononega-, narna-, chryso-, partiti-, and luteoviruses. Using RT-PCR and sequence analyses, we determined almost complete sequences of seven nege/kitavirus-like virus genomes; one of which was a variant of the Wuhan house centipede virus (WHCV-1). The other six seem to belong to four novel viruses distantly related to Wuhan insect virus 9 (WhIV-9) or Hubei nege-like virus 4 (HVLV-4). We designated the four viruses as barley aphid RNA virus 1 to 4 (BARV-1 to -4). Moreover, some nege/kitavirus-like sequences were found by searches on the transcriptome shotgun assembly (TSA) libraries of arthropods and plants. Phylogenetic analyses showed that BARV-1 forms a clade with WHCV-1 and HVLV-4, whereas BARV-2 to -4 clustered with WhIV-9 and an aphid virus, Aphis glycines virus 3. Both virus groups (tentatively designated as Centivirus and Aphiglyvirus, respectively), together with arthropod virus-like TSAs, fill the phylogenetic gaps between the negeviruses and kitaviruses lineages. We also characterized the flavi/jingmen-like and tombus-like virus sequences as well as other RNA viruses, including six putative novel viruses, designated as barley aphid RNA viruses 5 to 10. Interestingly, we also discovered that some aphid-associated viruses, including nege/kita-like viruses, were present in different aphid species, raising a speculation that these viruses might be distributed across different aphid species with plants being the reservoirs. This study provides novel information on the diversity and spread of nege/kitavirus-related viruses and other RNA viruses that are associated with aphids.

15.
Nat Food ; 1(8): 489-499, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37128077

RESUMO

Barley is the fourth most produced cereal crop in the world and one of the major dietary sources of cadmium (Cd), which poses serious threats to human health. Here, we identify a gene that encodes a P-type heavy metal ATPase 3 (HvHMA3) responsible for grain Cd accumulation in barley. HvHMA3 from the high Cd barley variety Haruna Nijo in Japan and the low Cd variety BCS318 in Afghanistan shared 97% identity at the amino acid level. In addition, the HvHMA3 from both varieties showed similar transport activity for Cd and the same subcellular localization at the tonoplast. However, the expression of HvHMA3 was double in BCS318 than in Haruna Nijo. A 3.3-kilobase Sukkula-like transposable element was found to be inserted upstream of the gene in the low Cd variety, which functioned as a promoter and enhanced the expression of HvHMA3. Introgression of this insertion to an elite barley cultivar through backcrossing resulted in decreased Cd accumulation in the grain grown in Cd-contaminated soil without yield penalty. The decreased Cd accumulation resulting from the insertion was also found in some other barley landraces in the world. Our results indicate that insertion of the Sukkula-like transposable element plays an important role in upregulating HvHMA3 expression.

16.
Cell Rep ; 28(5): 1362-1369.e4, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31365876

RESUMO

Common wheat has three sets of sub-genomes, making mutations difficult to observe, especially for traits controlled by recessive genes. Here, we produced hexaploid wheat lines with loss of function of homeoalleles of Qsd1, which controls seed dormancy in barley, by Agrobacterium-mediated CRISPR/Cas9. Of the eight transformed wheat events produced, three independent events carrying multiple mutations in wheat Qsd1 homeoalleles were obtained. Notably, one line had mutations in every homeoallele. We crossed this plant with wild-type cultivar Fielder to generate a transgene-free triple-recessive mutant, as revealed by Mendelian segregation. The mutant showed a significantly longer seed dormancy period than wild-type, which may result in reduced pre-harvest sprouting of grains on spikes. PCR, southern blotting, and whole-genome shotgun sequencing revealed that this segregant lacked transgenes in its genomic sequence. This technique serves as a model for trait improvement in wheat, particularly for genetically recessive traits, based on locus information from diploid barley.


Assuntos
Edição de Genes , Genes Recessivos , Mutação , Dormência de Plantas/genética , Sementes , Triticum , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Técnicas de Inativação de Genes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Triticum/genética , Triticum/metabolismo
17.
Sci Rep ; 9(1): 3745, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842645

RESUMO

Amyloplasts are plant-specific organelles responsible for starch biosynthesis and storage. Inside amyloplasts, starch forms insoluble particles, referred to as starch grains (SGs). SG morphology differs between species and SG morphology is particularly diverse in the endosperm of Poaceae plants, such as rice (Oryza sativa) and barley (Hordeum vulgare), which form compound SGs and simple SGs, respectively. SG morphology has been extensively imaged, but the comparative imaging of amyloplast morphology has been limited. In this study, SG-containing amyloplasts in the developing endosperm were visualized using stable transgenic barley and rice lines expressing amyloplast stroma-targeted green fluorescent protein fused to the transit peptide (TP) of granule-bound starch synthase I (TP-GFP). The TP-GFP barley and rice plants had elongated amyloplasts containing multiple SGs, with constrictions between the SGs. In barley, some amyloplasts were connected by narrow protrusions extending from their surfaces. Transgenic rice lines producing amyloplast membrane-localized SUBSTANDARD STARCH GRAIN6 (SSG6)-GFP were used to demonstrate that the developing amyloplasts contained multiple compound SGs. TP-GFP barley can be used to visualize the chloroplasts in leaves and other plastids in pollen and root in addition to the endosperm, therefore it provides as a useful tool to observe diverse plastids.


Assuntos
Hordeum/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Plastídeos/metabolismo , Transaminases/metabolismo , Endosperma/citologia , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Hordeum/citologia , Hordeum/metabolismo , Imagem Molecular , Oryza/citologia , Oryza/metabolismo , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
18.
Plant Cell Physiol ; 60(1): 29-37, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169882

RESUMO

The plant pathogen Agrobacterium tumefaciens infects plants and introduces the transferred-DNA (T-DNA) region of the Ti-plasmid into nuclear DNA of host plants to induce the formation of tumors (crown galls). The T-DNA region carries iaaM and iaaH genes for synthesis of the plant hormone auxin, indole-3-acetic acid (IAA). It has been demonstrated that the iaaM gene encodes a tryptophan 2-monooxygenase which catalyzes the conversion of tryptophan to indole-3-acetamide (IAM), and the iaaH gene encodes an amidase for subsequent conversion of IAM to IAA. In this article, we demonstrate that A. tumefaciens enhances the production of both IAA and phenylacetic acid (PAA), another auxin which does not show polar transport characteristics, in the formation of crown galls. Using liquid chromatography-tandem mass spectroscopy, we found that the endogenous levels of phenylacetamide (PAM) and PAA metabolites, as well as IAM and IAA metabolites, are remarkably increased in crown galls formed on the stem of tomato plants, implying that two distinct auxins are simultaneously synthesized via the IaaM-IaaH pathway. Moreover, we found that the induction of the iaaM gene dramatically elevated the levels of PAM, PAA and its metabolites, along with IAM, IAA and its metabolites, in Arabidopsis and barley. From these results, we conclude that A. tumefaciens enhances biosynthesis of two distinct auxins in the formation of crown galls.


Assuntos
Agrobacterium tumefaciens/metabolismo , Vias Biossintéticas , Ácidos Indolacéticos/metabolismo , Tumores de Planta/microbiologia , Arabidopsis/genética , Arabidopsis/microbiologia , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Hordeum/metabolismo , Hordeum/microbiologia , Ácidos Indolacéticos/química , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Metaboloma , Fenilacetatos/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Receptores de Superfície Celular/metabolismo
19.
Plant Biotechnol J ; 17(4): 836-845, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30267599

RESUMO

Ferulate 5-hydroxylase (F5H) catalyses the hydroxylation of coniferyl alcohol and coniferaldehyde for the biosynthesis of syringyl (S) lignin in angiosperms. However, the coordinated effects of F5H with caffeic acid O-methyltransferase (COMT) on the metabolic flux towards S units are largely unknown. We concomitantly regulated F5H expression in COMT-down-regulated transgenic switchgrass (Panicum virgatum L.) lines and studied the coordination of F5H and COMT in lignin biosynthesis. Down-regulation of F5H in COMT-RNAi transgenic switchgrass plants further impeded S lignin biosynthesis and, consequently, increased guaiacyl (G) units and reduced 5-OH G units. Conversely, overexpression of F5H in COMT-RNAi transgenic plants reduced G units and increased 5-OH units, whereas the deficiency of S lignin biosynthesis was partially compensated or fully restored, depending on the extent of COMT down-regulation in switchgrass. Moreover, simultaneous regulation of F5H and COMT expression had different effects on cell wall digestibility of switchgrass without biomass loss. Our results indicate that up-regulation and down-regulation of F5H expression, respectively, have antagonistic and synergistic effects on the reduction in S lignin resulting from COMT suppression. The coordinated effects between lignin genes should be taken into account in future studies aimed at cell wall bioengineering.


Assuntos
Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Metiltransferases/metabolismo , Panicum/enzimologia , Biomassa , Parede Celular/metabolismo , Regulação para Baixo , Metiltransferases/genética , Panicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA
20.
Breed Sci ; 68(5): 561-570, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30697117

RESUMO

Enhancing salt stress tolerance is a key strategy for increasing global food production. We previously found that long-term salinity stress significantly reduced grain fertility in the salt-sensitive barley (Hordeum vulgare) accession, 'OUC613', but not in the salt-tolerant accession, 'OUE812', resulting in large differences in grain yield. Here, we examined the underlying causes of the difference in grain fertility between these accessions under long-term treatment with 150 or 200 mM NaCl from the seedling stage to harvest and identified quantitative trait loci (QTLs) for maintaining grain fertility. In an artificial pollination experiment of the two accessions, grain fertility was significantly reduced only in OUC613 plants produced using pollen from plants grown under NaCl stress, suggesting that the low grain fertility of OUC613 was mainly due to reduced pollen fertility. Using QTL-seq combined with exome-capture sequencing and composite interval mapping of recombinant inbred lines derived from a cross between OUE812 and OUC613, we identified a QTL (qRP-2Hb) for grain fertility on chromosome 2H. The QTL region includes two genes encoding an F-box protein and a TIFY protein that are associated with male sterility, highlighting the importance of this region for maintaining grain fertility under salt stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA