Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 493: 898-909, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25003583

RESUMO

To mitigate the damages of natural hazards, policy responses can be beneficial only if they are effective. Using a self-administered survey approach, this paper focuses on the adherence to local fertilizer ordinances (i.e., county or municipal rules regulating the application of fertilizer to private lawns or facilities such as golf courses) implemented in jurisdictions along the Southwest Florida coast in response to hazardous blooms of Florida red tides (Karenia brevis). These ordinances play a role in the context of evolving programs of water pollution control at federal, state, water basin, and local levels. With respect to policy effectiveness, while the strength of physical linkages is of critical importance, the extent to which humans affected are aware of and adhere to the relevant rules, is equally critical. We sought to understand the public's depth of understanding about the rationales for local fertilizer ordinances. Respondents in Sarasota, Florida, were asked about their fertilizer practices in an area that has experienced several major blooms of Florida red tides over the past two decades. A highly educated, older population of 305 residents and "snowbirds" reported relatively little knowledge about a local fertilizer ordinance, its purpose, or whether it would change the frequency, size, or duration of red tides. This finding held true even among subpopulations that were expected to have more interest in or to be more knowledgeable about harmful algal blooms. In the face of uncertain science and environmental outcomes, and with individual motivations at odds with evolving public policies, the effectiveness of local community efforts to decrease the impacts of red tides may be compromised. Targeted social-science research on human perceptions about the risks of Florida red tides and education about the rationales for potential policy responses are warranted.


Assuntos
Política Ambiental , Fertilizantes , Fidelidade a Diretrizes , Proliferação Nociva de Algas , Poluição da Água/prevenção & controle , Florida , Humanos , Poluição da Água/legislação & jurisprudência
2.
Harmful Algae ; 13: 89-94, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23762030

RESUMO

A bloom of Karenia brevis Davis developed in September 2007 near Jacksonville, Florida and subsequently progressed south through east Florida coastal waters and the Atlantic Intracoastal Waterway (ICW). Maximum cell abundances exceeded 106 cells L-1 through October in the northern ICW between Jacksonville and the Indian River Lagoon. The bloom progressed further south during November, and terminated in December 2007 at densities of 104 cells L-1 in the ICW south of Jupiter Inlet, Florida. Brevetoxins were subsequently sampled in sediments and seagrass epiphytes in July and August 2008 in the ICW. Sediment brevetoxins occurred at concentrations of 11-15 ng PbTx-3 equivalents (g dry wt sediment)-1 in three of five basins in the northern ICW during summer 2008. Seagrass beds occur south of the Mosquito Lagoon in the ICW. Brevetoxins were detected in six of the nine seagrass beds sampled between the Mosquito Lagoon and Jupiter Inlet at concentrations of 6-18 ng (g dry wt epiphytes)-1. The highest brevetoxins concentrations were found in sediments near Patrick Air Force Base at 89 ng (g dry wt sediment)-1. In general, brevetoxins occurred in either seagrass epiphytes or sediments. Blades of the resident seagrass species have a maximum life span of less than six months, so it is postulated that brevetoxins could be transferred between epibenthic communities of individual blades in seagrass beds. The occurrence of brevetoxins in east Florida coast sediments and seagrass epiphytes up to eight months after bloom termination supports observations from the Florida west coast that brevetoxins can persist in marine ecosystems in the absence of sustained blooms. Furthermore, our observations show that brevetoxins can persist in sediments where seagrass communities are absent.

3.
BMC Genomics ; 12: 346, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21729317

RESUMO

BACKGROUND: The role of coastal nutrient sources in the persistence of Karenia brevis red tides in coastal waters of Florida is a contentious issue that warrants investigation into the regulation of nutrient responses in this dinoflagellate. In other phytoplankton studied, nutrient status is reflected by the expression levels of N- and P-responsive gene transcripts. In dinoflagellates, however, many processes are regulated post-transcriptionally. All nuclear encoded gene transcripts studied to date possess a 5' trans-spliced leader (SL) sequence suggestive, based on the trypanosome model, of post-transcriptional regulation. The current study therefore sought to determine if the transcriptome of K. brevis is responsive to nitrogen and phosphorus and is informative of nutrient status. RESULTS: Microarray analysis of N-depleted K. brevis cultures revealed an increase in the expression of transcripts involved in N-assimilation (nitrate and ammonium transporters, glutamine synthetases) relative to nutrient replete cells. In contrast, a transcriptional signal of P-starvation was not apparent despite evidence of P-starvation based on their rapid growth response to P-addition. To study transcriptome responses to nutrient addition, the limiting nutrient was added to depleted cells and changes in global gene expression were assessed over the first 48 hours following nutrient addition. Both N- and P-addition resulted in significant changes in approximately 4% of genes on the microarray, using a significance cutoff of 1.7-fold and p ≤ 10-4. By far, the earliest responding genes were dominated in both nutrient treatments by pentatricopeptide repeat (PPR) proteins, which increased in expression up to 3-fold by 1 h following nutrient addition. PPR proteins are nuclear encoded proteins involved in chloroplast and mitochondria RNA processing. Correspondingly, other functions enriched in response to both nutrients were photosystem and ribosomal genes. CONCLUSIONS: Microarray analysis provided transcriptomic evidence for N- but not P-limitation in K. brevis. Transcriptomic responses to the addition of either N or P suggest a concerted program leading to the reactivation of chloroplast functions. Even the earliest responding PPR protein transcripts possess a 5' SL sequence that suggests post-transcriptional control. Given the current state of knowledge of dinoflagellate gene regulation, it is currently unclear how these rapid changes in such transcript levels are achieved.


Assuntos
Dinoflagellida/genética , Perfilação da Expressão Gênica , Nitratos/farmacologia , Fosfatos/farmacologia , Animais , Dinoflagellida/crescimento & desenvolvimento , Proliferação Nociva de Algas , Nitratos/química , Análise de Sequência com Séries de Oligonucleotídeos , Fosfatos/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
4.
Harmful Algae ; 9(4): 351-358, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24179460

RESUMO

Oxygen-based productivity and respiration rates were determined in West Florida coastal waters to evaluate the proportion of community respiration demands met by autotrophic production within a harmful algal bloom dominated by Karenia brevis. The field program was adaptive in that sampling during the 2006 bloom occurred where surveys by the Florida Wildlife Research Institute indicated locations with high cell abundances. Net community production (NCP) rates from light-dark bottle incubations during the bloom ranged from 10 to 42 µmole O2 L-1 day-1 with highest rates in bloom waters where abundances exceeded 105 cells L-1. Community dark respiration (R) rates in dark bottles ranged from <10 to 70 µmole O2 L-1 day-1 over 24 h. Gross primary production derived from the sum of NCP and R varied from ca. 20 to 120 µmole O2 L-1 day-1. The proportion of GPP attributed to NCP varied with the magnitude of R during day and night periods. Most surface communities exhibited net autotrophic production (NCP > R) over 24 h, although heterotrophy (NCP < R) characterized the densest sample where K. brevis cell densities exceed 106 cells L-1.

5.
Environ Health ; 7 Suppl 2: S5, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-19025676

RESUMO

Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs). Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges.


Assuntos
Ecossistema , Saúde Ambiental/métodos , Eucariotos/crescimento & desenvolvimento , Eutrofização , Oceanografia/métodos , Alimentos Marinhos/microbiologia , Água do Mar/microbiologia , Animais , Surtos de Doenças/prevenção & controle , Monitoramento Ambiental/métodos , Eucariotos/microbiologia , Humanos , Modelos Biológicos , Dinâmica Populacional , Poluentes da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA