Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Androl ; 30(3): 325-37, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19096088

RESUMO

Cryptorchidism and scrotal heating result in abnormal spermatogenesis, but the mechanism(s) prescribing this temperature sensitivity are unknown. It was previously reported that the AKR/N or MRL/MpJ-+/+ mouse testis is more heat-resistant than the testis from the C57BL/6 strain. We have attempted to probe into the mechanism(s) involved in heat sensitivity by examining global gene expression profiles of normal and heat-treated testes from C57BL/6, AKR/N, and MRL/MpJ-+/+ mice by microarray analysis. In the normal C57BL/6 testis, 415 and 416 transcripts were differentially expressed (at least 2-fold higher or lower) when compared with the normal AKR/N and MRL/MpJ-+/+ testis, respectively. The AKR/N and MRL/MpJ-+/+ strains revealed 268 differentially expressed transcripts between them. There were 231 transcripts differentially expressed between C57BL/6 and 2 purported heat-resistant strains, AKR/N and MRL/MpJ-+/+. Next, the testes of C57BL/6 and AKR/N mice were exposed to 43 degrees C for 15 minutes and harvested at different time points for terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) studies and microarrays. An increase of TUNEL-positive germ cell numbers was significant 8 hours after heat exposure in the C57BL/6 mouse. However, this increase was not observed in the AKR/N mouse until 10 hours after heat exposure. All tubules showed germ cell loss and disruption in C57BL/6 testis 24 hours after heat shock. In contrast, although a number of seminiferous tubules showed an abnormal morphology 24 hours post-heat shock in the AKR/N mouse, many tubules still retained a normal structure. Numerous transcripts exhibited differential regulation between the 2 strains within 24 hours after heat exposure. The differentially expressed transcripts in the testes 8 hours after heat exposure were targeted to identify the genes involved in the initial response rather than those attributable to germ cell loss. Twenty transcripts were significantly down-regulated and 19 genes were up-regulated by hyperthermia in C57BL/6 and did not show a parallel change in the AKR/N testis. Conversely, heat shock resulted in 30 up-regulated transcripts and 31 down-regulated transcripts in AKR/N that were not similarly regulated in C57BL/6. A number of genes shared similar differential expression patterns and differential regulation by hyperthermia in both strains of mice. Taken together, the results of the present study indicate that the diverse genetic backgrounds in the 3 strains lead to major differences in normal testis gene expression profiles, whereas the differences in heat shock responses involve a significantly smaller number of genes. The data generated may provide insights regarding gene networks and pathways involved in heat stress and their relationship to spermatogenesis.


Assuntos
Criptorquidismo/genética , Febre/genética , Regulação da Expressão Gênica , Expressão Gênica , Testículo/fisiologia , Animais , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos
2.
Biol Reprod ; 73(5): 872-80, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15972886

RESUMO

In previous studies, we identified a new member of the male reproductive tract subgroup within family 2 cystatins, termed cystatin 12 (Cst12, previously known as Cst TE-1 or Cres3). The mouse Cst12 mRNA was primarily localized to the Sertoli cells in the testis and to the epithelial cells of the proximal caput region of the epididymis. In this report, studies were carried out to characterize the cystatin 12 (CST12) protein in mouse testis and epididymis. A recombinant His-CST12 fusion protein was expressed in E. coli and purified to generate an anti-CST12 polyclonal antibody. Western blot analysis showed little or no cross-reaction between the anti-CST12 antibody and several other known male reproductive tract cystatins. Immunohistochemistry revealed that CST12 protein was predominantly localized to the cytoplasm of Sertoli cells in the seminiferous epithelium in a stage-dependent manner. All stages showed high levels of expression except stages VII and VIII, in which very limited expression of CST12 was observed. In the epididymis, CST12 was highly expressed in the cytoplasm of the epithelial cells in the proximal caput and secreted into the lumen. The mouse CST12 protein was also detected in other regions of the epididymis; however, the localization varied greatly along the epididymal tubules. Indirect immunofluorescence showed that CST12 protein was localized to the cytoplasmic droplets in both testicular and epididymal spermatozoa. These observations suggest that CST12 protein may play a specialized role during spermatogenesis and sperm maturation. Northern blot analyses demonstrated that Cst12 transcript levels in the epididymis decreased after castration, and testosterone propionate (T) treatment further repressed the expression of this gene. However, 17-beta estradiol (E) administration maintained the expression of Cst12 mRNA after castration, whereas treatment with both T and E failed to maintain Cst12 mRNA levels in epididymis. These results suggest that androgen and estrogen, probably with other testicular factors, are involved in the regulation of this gene.


Assuntos
Cistatinas/metabolismo , Epididimo/metabolismo , Testículo/metabolismo , Fatores Etários , Animais , Anticorpos/genética , Anticorpos/imunologia , Anticorpos/isolamento & purificação , Cistatinas/genética , Cistatinas/imunologia , Citoplasma/metabolismo , Epididimo/citologia , Estradiol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos , Orquiectomia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Maturação do Esperma , Espermatozoides/metabolismo , Testículo/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA