Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transgenic Res ; 31(4-5): 567-578, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35974134

RESUMO

An important optimization step in plant-based recombinant protein production systems is the selection of an appropriate cultivar after a potential host has been determined. Previously, we have shown that transgenic tomatoes of the variety 'Micro-Tom' accumulate incredibly high levels of miraculin (MIR) due to the introduction of MIR gene controlled by a CaMV35S promoter and a heat-shock protein terminator. However, 'Micro-Tom' is unsuitable for commercial production of MIR as it is a dwarf cultivar characterized by small-sized fruit and poor yield. Here, we used the crossbreeding approach to transfer the high MIR accumulation trait of transgenic 'Micro-Tom' tomatoes to 'Natsunokoma' and 'Aichi First', two commercial cultivars producing medium and large fruit sizes, respectively. Fruits of the resultant crossbred lines were larger (~ 95 times), but their miraculin accumulation levels (~ 1,062 µg/g fresh mass) were comparable to the donor cultivar, indicating that the high miraculin accumulation trait was preserved regardless of fruit size or cultivar. Further, the transferred trait resulted in a 3-4 fold increase in overall miraculin production than that of the previously reported line 5B. These findings demonstrate the effectiveness of crossbreeding in improving MIR production in tomatoes and could pave the way for a more efficient production of recombinant proteins in other plants.


Assuntos
Solanum lycopersicum , Frutas/genética , Patrimônio Genético , Glicoproteínas/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hibridização Genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/genética
2.
Plant Physiol Biochem ; 178: 70-79, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35276597

RESUMO

Miracle fruit, Synsepalum dulcificum, produces a unique taste-modifying protein, miraculin (MIR), which has an attractive potential for commercial application as a novel low-calorie sweetener. To establish a stable supply system for MIR, a previous study established a platform for recombinant MIR (rMIR) production in tomato plants and demonstrated that native miraculin from miracle fruit (nMIR) and rMIR were almost identical in their protein modifications with N-glycan. However, neither N-glycosylation nor the influence of fruit maturation on the structural changes of N-glycan have been fully characterized in detail. Here, with a focus on N-glycosylation and the contribution of fruit maturation to N-glycan, we reanalyzed the N-glycosylation of the natural maturation stages of nMIR and rMIR, and then compared the N-glycan structures on MIRs prepared from the fruit at two different maturation stages. The detailed peptide mapping and N-glycosylation analysis of MIRs provided evidence that MIRs have variants, which were derived mainly from the differences in the N-glycan structure in nMIR and the N-glycosylation in rMIR and not from the cleavage of the peptide backbone. N-Glycan analysis of MIRs from the maturation stage of fruits demonstrated that N-glycan structures were similar among nMIRs and rMIRs at every maturation stage. These results indicated that the heterogeneously expressed rMIRs had the same characteristics in post-translational modifications, especially N-glycosylation and N-glycan structures, throughout the maturation stages. This study demonstrated the potential of recombinant protein expressed in tomato plants and paves the way for the commercial use of rMIR.


Assuntos
Frutas , Synsepalum , Frutas/metabolismo , Glicoproteínas/metabolismo , Glicosilação , Plantas Geneticamente Modificadas/metabolismo , Synsepalum/genética , Synsepalum/metabolismo
3.
Plant Biotechnol (Tokyo) ; 38(1): 161-165, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34177337

RESUMO

The taste-modifying protein miraculin (MIR) has received increasing interest as a new low-calorie sweetener. In our previous study using the tomato variety 'Micro-Tom,' it was shown that in transgenic tomatoes in which MIR was expressed by using the cauliflower mosaic virus 35S promoter (p35S) and a heat shock protein terminator (tHSP) cassette (p35S-MIR-tHSP), higher levels of miraculin accumulated than when MIR was driven by the nopaline synthase terminator (tNOS) cassette (p35S-MIR-tNOS). 'Micro-Tom' is a dwarf tomato used for research and shows a low yield. To achieve high productivity of MIR, it is essential to improve the MIR accumulation potential by using high-yielding cultivars. In this study, we evaluate whether the high MIR accumulation trait mediated by the tHSP appears even when fruit size increases. A line in which the p35S-MIR-tHSP cassette was introduced into a high-yielding variety was bred by backcrossing. The line homozygous for MIR showed higher accumulation of MIR than the heterozygous line. Despite large differences in fruit size, the MIR level in the backcross line was similar to that in the p35S-MIR-tHSP line (background 'Micro-Tom'). It was approximately 3.1 times and 4.0 times higher than those in miracle fruits and the p35S-MIR-tNOS tomato line 5B ('Moneymaker' background, which exhibits the highest miraculin productivity achieved thus far), respectively. These results demonstrate that the high MIR accumulation trait mediated by the tHSP appears even when fruit size is increased.

4.
Plant Biotechnol (Tokyo) ; 38(4): 421-431, 2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35087307

RESUMO

The commercial use of genetically modified (GM) crops requires prior assessment of the risks to the environment when these crops are grown in the field or distributed. Assessments protocols vary across countries and GM crop events, but there is a common need to assess environmental biosafety. In this study, we conducted an environmental risk assessment in a confined field of GM tomato plants that can produce miraculin, a taste-altering protein that causes sour tastes to be perceived as sweet, for practical use in Japan. The evaluation was conducted for 1) competitiveness (the ability to compete with wild plants for nutrients, sunlight, and growing areas and prevent their growth) and 2) the production of toxic substances (the ability to produce substances that interfere with the habitat and growth of wild plants, animals, and microorganisms). Investigations of plant morphology and growth characteristics as well as tolerance to low temperature during early growth and overwintering for assessment endpoints related to competitiveness showed no biologically meaningful difference between GM tomato and non-GM tomato. In addition, harmful substances in plant residues and root secretions were assessed by the plow-in method, succeeding crop test and soil microflora tests, and it was determined that GM tomato does not exhibit an increase in harmful substances. Based on these results, it was concluded that GM miraculin-accumulating tomato is comparable to conventional tomato and is unlikely to have unintended adverse effects in the natural environment of Japan.

5.
Plant Biotechnol (Tokyo) ; 35(4): 375-379, 2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31892825

RESUMO

Miraculin is a promising protein with taste-modifying properties. Focusing on the unique function and potential of miraculin, recombinant miraculin production has been explored with the use of heterologous expression systems, but the activities of recombinant miraculins were much lower than those of native miraculin, probably due to the difference in post-translational modification, especially N-glycosylation. For practical use therefore, the differences between N-glycan of recombinant miraculin compared to that of native miraculin should be minimized. Here, to establish the platform for functional miraculin production, we expressed miraculin in tomato plants with the same taste-modifying activity as native miraculin purified from miracle fruit, and we compared the N-glycan structures with those of native miraculin. Our N-glycan structural analysis using purified miraculin, followed by hydrazynolysis, 2-pyridylamine (PA)-labeling, high-performance liquid chromatography, and a liquid chromatography tandem-mass spectrometry analysis revealed that both the native and recombinant miraculins carried an M3 structure as a predominant structure and that most of the N-glycan structures on the miraculins were pauci-mannosidic structures with a smaller amount of plant-specific α1,3-fucosylated and/or ß1,2-xylosylated N-glycans and without a Lewis a epitope. These results indicate that the N-glycoform of native miraculin from miracle fruit and recombinant miraculin expressed in tomato plants are almost identical to each other with similar ratios and that, therefore, plant-specific N-glycans are essential for showing the full taste-modifying activity of miraculin.

6.
Front Plant Sci ; 7: 539, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27200016

RESUMO

Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems.

7.
Plant Cell Rep ; 32(4): 529-36, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23306632

RESUMO

KEY MESSAGE: The E8 promoter-HSP terminator expression cassette is a powerful tool for increasing the accumulation of recombinant protein in a ripening tomato fruit. Strong, tissue-specific transgene expression is a desirable feature in transgenic plants to allow the production of variable recombinant proteins. The expression vector is a key tool to control the expression level and site of transgene and recombinant protein expression in transgenic plants. The combination of the E8 promoter, a fruit-ripening specific promoter, and a heat shock protein (HSP) terminator, derived from heat shock protein 18.2 of Arabidopsis thaliana, produces the strong and fruit-specific accumulation of recombinant miraculin in transgenic tomato. Miraculin gene expression was driven by an E8 promoter and HSP terminator cassette (E8-MIR-HSP) in transgenic tomato plants, and the miraculin concentration was the highest in the ripening fruits, representing 30-630 µg miraculin of the gram fresh weight. The highest level of miraculin concentration among the transgenic tomato plant lines containing the E8-MIR-HSP cassette was approximately four times higher than those observed in a previous study using a constitutive 35S promoter and NOS terminator cassette (Hiwasa-Tanase et al. in Plant Cell Rep 30:113-124, 2011). These results demonstrate that the combination of the E8 promoter and HSP terminator cassette is a useful tool to increase markedly the accumulation of recombinant proteins in a ripening fruit-specific manner.


Assuntos
Glicoproteínas/biossíntese , Regiões Promotoras Genéticas , Proteínas Recombinantes/biossíntese , Solanum lycopersicum/genética , Regiões Terminadoras Genéticas , Arabidopsis , Proteínas de Arabidopsis/genética , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Glicoproteínas/genética , Proteínas de Choque Térmico/genética , Solanum lycopersicum/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/genética
8.
Plant Cell Rep ; 31(8): 1415-24, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22481231

RESUMO

UNLABELLED: Fruit-specific promoters have been used as genetic engineering tools for studies on molecular mechanism of fruit development and advance in fruit quality and additional value by increasing functional component. Especially fruit-ripening specific promoters have been well utilized and studied in tomato; however, few studies have reported the development of promoters that act at fruit developing stages such as immature green and mature green periods. In this study, we report novel promoters for gene expression during the green to ripening stages of tomato fruit development. Genes specifically expressed at tomato fruit were selected using microarray data. Subsequent to confirmation of the expression of the selected 12 genes, upstream DNA fragments of the genes LA22CD07, Les.3122.2.A1_a_at and LesAffx.6852.1.S1_at which specifically expressed at fruit were isolated from tomato genomic DNA as promoter regions. Isolated promoter regions were fused with the GUS gene and the resultant constructs were introduced into tomato by agrobacterium-mediated transformation for evaluation of promoter activity in tomato fruit. The two promoters of LA22CD07, and LesAffx.6852.1.S1_at showed strong activity in the fruit, weak activity in the flower and undetectable activity in other tissues. Unlike well-known fruit-ripening specific promoters, such as the E8 promoter, these promoters exhibited strong activity in green fruit in addition to red-ripening fruit, indicating that the promoters are suitable for transgene expression during green to ripening stages of tomato fruit development. KEY MESSAGE: Novel fruit-specific promoters have been identified and are suitable for transgene expression during green to ripening stages of tomato fruit development.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/genética , Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Transgenes/genética , Frutas/citologia , Regulação da Expressão Gênica no Desenvolvimento , Genes de Plantas/genética , Estudos de Associação Genética , Glucuronidase/metabolismo , Solanum lycopersicum/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos/genética , Reação em Cadeia da Polimerase em Tempo Real
9.
Plant Cell Rep ; 31(3): 513-25, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22160133

RESUMO

The utility of plants as biofactories has progressed in recent years. Some recombinant plant-derived pharmaceutical products have already reached the marketplace. However, with the exception of drugs and vaccines, a strong effort has not yet been made to bring recombinant products to market, as cost-effectiveness is critically important for commercialization. Sweet-tasting proteins and taste-modifying proteins have a great deal of potential in industry as substitutes for sugars and as artificial sweeteners. The taste-modifying protein, miraculin, functions to change the perception of a sour taste to a sweet one. This taste-modifying function can potentially be used not only as a low-calorie sweetener but also as a new seasoning that could be the basis of a new dietary lifestyle. However, miraculin is far from inexpensive, and its potential as a marketable product has not yet been fully developed. For the last several years, biotechnological production of this taste-modifying protein has progressed extensively. In this review, the characteristics of miraculin and recent advances in its production using transgenic plants are summarized, focusing on such topics as the suitability of plant species as expression hosts, the cultivation method for transgenic plants, the method of purifying miraculin and future advances required to achieve industrial use.


Assuntos
Frutas/metabolismo , Glicoproteínas/biossíntese , Solanum lycopersicum/metabolismo , Synsepalum/genética , Indústria Alimentícia , Inocuidade dos Alimentos , Expressão Gênica , Glicoproteínas/isolamento & purificação , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Edulcorantes , Paladar , Transformação Genética
10.
J Agric Food Chem ; 59(18): 9942-9, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21861502

RESUMO

High-level accumulation of the target recombinant protein is a significant issue in heterologous protein expression using transgenic plants. Miraculin, a taste-modifying protein, was accumulated in transgenic tomatoes using an expression cassette in which the miraculin gene was expressed by the cauliflower mosaic virus (CaMV) 35S promoter and the heat shock protein (HSP) terminator (MIR-HSP). The HSP terminator was derived from heat shock protein 18.2 in Arabidopsis thaliana . Using this HSP-containing cassette, the miraculin concentration in T0 transgenic tomato lines was 1.4-13.9% of the total soluble protein (TSP), and that in the T1 transgenic tomato line homozygous for the miraculin gene reached 17.1% of the TSP. The accumulation level of the target protein was comparable to levels observed with chloroplast transformation. The high-level accumulation of miraculin in T0 transgenic tomato lines achieved by the HSP terminator was maintained in the successive T1 generation, demonstrating the genetic stability of this accumulation system.


Assuntos
Arabidopsis/química , Glicoproteínas/metabolismo , Proteínas de Choque Térmico/farmacologia , Plantas Geneticamente Modificadas/metabolismo , Solanum lycopersicum/metabolismo , Frutas/metabolismo , Glicoproteínas/genética , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , RNA Mensageiro/análise , Proteínas Recombinantes/metabolismo , Edulcorantes
11.
Plant Signal Behav ; 6(8): 1172-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21791976

RESUMO

One of the ultimate goals of plant science is to test a hypothesis obtained by basic science and to apply it to agriculture and industry. A plant factory is one of the ideal systems for this trial. Environmental factors affect both plant yield and the accumulation of recombinant proteins for industrial applications within transgenic plants. However, there have been few reports studying plant productivity for recombinant protein in closed cultivation systems called plant factories. To investigate the effects of photosynthetic photon flux (PPF) on tomato fruit yield and the accumulation of recombinant miraculin, a taste-modifying glycoprotein, in transgenic tomato fruits, plants were cultivated at various PPFs from 100 to 400 (µmol m(-2) s(-)1) in a plant factory. Miraculin production per unit of energy used was highest at PPF100, although miraculin production per unit area was highest at PPF300. The commercial productivity of recombinant miraculin in transgenic tomato fruits largely depended on light conditions in the plant factory. Our trial will be useful to consider the trade-offs between the profits from production of high-value materials in plants and the costs of electricity.


Assuntos
Glicoproteínas/biossíntese , Fotossíntese , Plantas Geneticamente Modificadas/metabolismo , Solanum lycopersicum/metabolismo , Cruzamentos Genéticos , Frutas/metabolismo , Glicoproteínas/análise , Glicoproteínas/genética , Solanum lycopersicum/genética , Fenótipo , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes/análise , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
12.
PLoS One ; 6(2): e16989, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21359231

RESUMO

As metabolomics can provide a biochemical snapshot of an organism's phenotype it is a promising approach for charting the unintended effects of genetic modification. A critical obstacle for this application is the inherently limited metabolomic coverage of any single analytical platform. We propose using multiple analytical platforms for the direct acquisition of an interpretable data set of estimable chemical diversity. As an example, we report an application of our multi-platform approach that assesses the substantial equivalence of tomatoes over-expressing the taste-modifying protein miraculin. In combination, the chosen platforms detected compounds that represent 86% of the estimated chemical diversity of the metabolites listed in the LycoCyc database. Following a proof-of-safety approach, we show that % had an acceptable range of variation while simultaneously indicating a reproducible transformation-related metabolic signature. We conclude that multi-platform metabolomics is an approach that is both sensitive and robust and that it constitutes a good starting point for characterizing genetically modified organisms.


Assuntos
Alimentos Geneticamente Modificados , Metabolômica , Solanum lycopersicum/química , Algoritmos , Inocuidade dos Alimentos/métodos , Regulação da Expressão Gênica de Plantas , Glicoproteínas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Metaboloma , Metabolômica/métodos , Modelos Biológicos , Valor Nutritivo , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Controle de Qualidade , Paladar/fisiologia
13.
Transgenic Res ; 20(6): 1285-92, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21359850

RESUMO

The E8 promoter, a tomato fruit-ripening-specific promoter, and the CaMV 35S promoter, a constitutive promoter, were used to express the miraculin gene encoding the taste-modifying protein in tomato. The accumulation of miraculin protein and mRNA was compared among transgenic tomatoes expressing the miraculin gene driven by these promoters. Recombinant miraculin protein predominantly accumulated in transgenic tomato lines using the E8 promoter (E8-MIR) only at the red fruit stage. The accumulations were almost uniform among all fruit tissues. When the 35S promoter (35S-MIR) was used, miraculin accumulation in the exocarp was much higher than in other tissues, indicating that the miraculin accumulation pattern can be regulated by using different types of promoters. We also discuss the potential of the E8-MIR lines for practical use.


Assuntos
Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Glicoproteínas/metabolismo , Regiões Promotoras Genéticas , Solanum lycopersicum/genética , Agrobacterium/genética , Agrobacterium/metabolismo , Caulimovirus/genética , Caulimovirus/metabolismo , Frutas/genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Glicoproteínas/genética , Solanum lycopersicum/metabolismo , Pigmentação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Synsepalum/genética , Transformação Genética
14.
Plant Cell Physiol ; 52(2): 283-96, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21258066

RESUMO

The tomato is an excellent model for studies of plants bearing berry-type fruits and for experimental studies of the Solanaceae family of plants due to its conserved genetic organization. In this study, a comprehensive mutant tomato population was generated in the background of Micro-Tom, a dwarf, rapid-growth variety. In this and previous studies, a family including 8,598 and 6,422 M(2) mutagenized lines was produced by ethylmethane sulfonate (EMS) mutagenesis and γ-ray irradiation, and this study developed and investigated these M(2) plants for alteration of visible phenotypes. A total of 9,183 independent M(2) families comprising 91,830 M(2) plants were inspected for phenotypic alteration, and 1,048 individual mutants were isolated. Subsequently, the observed mutant phenotypes were classified into 15 major categories and 48 subcategories. Overall, 1,819 phenotypic categories were found in 1,048 mutants. Of these mutants, 549 were pleiotropic, whereas 499 were non-pleiotropic. Multiple different mutant alleles per locus were found in the mutant libraries, suggesting that the mutagenized populations were nearly saturated. Additionally, genetic analysis of backcrosses indicated the successful inheritance of the mutations in BC(1)F(2) populations, confirming the reproducibility in the morphological phenotyping of the M(2) plants. To integrate and manage the visible phenotypes of mutants and other associated data, we developed the in silico database TOMATOMA, a relational system interfacing modules between mutant line names and phenotypic categories. TOMATOMA is a freely accessible database, and these mutant recourses are available through the TOMATOMA (http://tomatoma.nbrp.jp/index.jsp).


Assuntos
Bases de Dados Genéticas , Fenótipo , Solanum lycopersicum/genética , Alelos , Cruzamentos Genéticos , DNA de Plantas/genética , Biblioteca Gênica , Mutação , Análise de Sequência de DNA
15.
Plant Cell Rep ; 30(1): 113-24, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21076835

RESUMO

In our previous study, a transgenic tomato line that expressed the MIR gene under control of the cauliflower mosaic virus 35S promoter and the nopaline synthase terminator (tNOS) produced the taste-modifying protein miraculin (MIR). However, the concentration of MIR in the tomatoes was lower than that in the MIR gene's native miracle fruit. To increase MIR production, the native MIR terminator (tMIR) was used and a synthetic gene encoding MIR protein (sMIR) was designed to optimize its codon usage for tomato. Four different combinations of these genes and terminators (MIR-tNOS, MIR-tMIR, sMIR-tNOS and sMIR-tMIR) were constructed and used for transformation. The average MIR concentrations in MIR-tNOS, MIR-tMIR, sMIR-tNOS and sMIR-tMIR fruits were 131, 197, 128 and 287 µg/g fresh weight, respectively. The MIR concentrations using tMIR were higher than those using tNOS. The highest MIR accumulation was detected in sMIR-tMIR fruits. On the other hand, the MIR concentration was largely unaffected by sMIR-tNOS. The expression levels of both MIR and sMIR mRNAs terminated by tMIR tended to be higher than those terminated by tNOS. Read-through mRNA transcripts terminated by tNOS were much longer than those terminated by tMIR. These results suggest that tMIR enhances mRNA expression and permits the multiplier effect of optimized codon usage.


Assuntos
Códon/genética , Genes de Plantas/genética , Glicoproteínas/metabolismo , Proteínas Recombinantes/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Regiões Terminadoras Genéticas/genética , Sequência de Bases , Southern Blotting , Frutas/genética , Regulação da Expressão Gênica de Plantas , Glucuronidase/metabolismo , Glicoproteínas/genética , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , Poliadenilação/genética , Transcrição Gênica , Transgenes/genética
16.
J Agric Food Chem ; 58(17): 9505-10, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20695489

RESUMO

A transgenic tomato line (56B, "Moneymaker") that expresses the miraculin gene driven by the CaMV 35S promoter was crossed with a dwarf tomato ("Micro-Tom") for the molecular breeding of cultivars that are suitable for miraculin production in a closed cultivation system. Plant size, miraculin accumulation, and self-pruning growth were used as selection indicators for F2 plants. Two lines were chosen for further analysis, bred to the F6 or F7 generation and cultivated in a closed cultivation system. In 56B and the two crossed lines, the concentrations of miraculin in the pericarp were 140, 367, and 343 microg/g FW, respectively. We also estimated that 26.2, 73.6, and 45.9 kg FW/m2 of tomatoes and 2.2, 16.6, and 9.8 mg/m2 of miraculin in the pericarp, respectively, could be harvested per year. These two crossed lines will be useful for the mass production of miraculin, especially in a closed cultivation system.


Assuntos
Glicoproteínas/genética , Solanum lycopersicum/genética , Ensaio de Imunoadsorção Enzimática , Plantas Geneticamente Modificadas
17.
J Agric Food Chem ; 58(1): 282-6, 2010 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-20014854

RESUMO

We previously developed a transgenic tomato that expresses the miraculin gene using a constitutive promoter. In this study, we profiled the developmental and spatial accumulation of the miraculin protein and mRNA in transgenic tomato fruits. Miraculin mRNA expression was almost constant up to orange stage, and then the expression increased at red stage. The miraculin protein accumulated gradually during fruit development and reached its highest level at the overripe stage. At the red stage of fruit, miraculin protein was accumulated at the highest level in the exocarp, and similar in other fruit tissues: mesocarp, dissepiment, upper placenta, lower placenta and jelly. Moreover, the pattern of miraculin accumulation in fruit tissues was the same regardless of genetic background and position at which the miraculin gene was inserted in the genome. We also discuss suitable tomato types expressing miraculin for their commercial use.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
18.
J Agric Food Chem ; 57(12): 5148-51, 2009 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-19469504

RESUMO

Miraculin is a taste-modifying protein that can be isolated from miracle fruit ( Richadella dulcifica ), a shrub native to West Africa. It is able to turn a sour taste into a sweet taste. The commercial exploitation of this sweetness-modifying protein is underway, and a fast and efficient purification method to extract the protein is needed. We succeeded in purifying miraculin from miracle fruit in a single-step purification using immobilized metal-affinity chromatography (IMAC). The purified miraculin exhibited high purity (>95%) in reverse-phase high-performance liquid chromatography. We also demonstrated the necessity of its structure for binding to the nickel-IMAC column.


Assuntos
Cromatografia de Afinidade/métodos , Glicoproteínas/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Edulcorantes/isolamento & purificação , Synsepalum/química , Glicoproteínas/química , Metais/química , Proteínas de Plantas/química , Ligação Proteica , Edulcorantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA