Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 195(2): 383-396, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33502629

RESUMO

Plants growing under reduced water availability can affect insect herbivores differently, in some instances benefitting them. However, the forces mediating these positive impacts remain mostly unclear. To identify how water availability impacts plant quality and multi-trophic interactions, we conducted manipulative field studies with two populations of the specialist herbivore Pieris rapae, and its host plant, Rorippa indica. We found that P. rapae larvae experienced higher survival on R. indica growing under low water availability compared with plants grown under high water availability. Higher survival of eggs and larvae was related to the reduced abundance of other herbivores and natural enemies. Water availability had differential impacts on other members of the herbivore community by altering plant quality. Low water availability decreased the quality of R. indica to most herbivores, as indicated by reduced abundance in the field and decreased relative growth rate in laboratory feeding assays. In contrast, P. rapae larval performance was not affected by sympatric R. indica grown under different water availability. These results indicate that local P. rapae populations possess physiological adaptations to overcome fluctuations in host quality. Our findings illustrate that reduced water availability is beneficial to a specialist herbivore but detrimental to most other herbivores. Our work highlights the complex effects of the arthropod communities associated with plants in determining the impacts of water availability on insect herbivores.


Assuntos
Artrópodes , Borboletas , Animais , Herbivoria , Insetos , Água
2.
Nat Commun ; 10(1): 4612, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601806

RESUMO

Both community composition changes due to species redistribution and within-species size shifts may alter body-size structures under climate warming. Here we assess the relative contribution of these processes in community-level body-size changes in tropical moth assemblages that moved uphill during a period of warming. Based on resurvey data for seven assemblages of geometrid moths (>8000 individuals) on Mt. Kinabalu, Borneo, in 1965 and 2007, we show significant wing-length reduction (mean shrinkage of 1.3% per species). Range shifts explain most size restructuring, due to uphill shifts of relatively small species, especially at high elevations. Overall, mean forewing length shrank by ca. 5%, much of which is accounted for by species range boundary shifts (3.9%), followed by within-boundary distribution changes (0.5%), and within-species size shrinkage (0.6%). We conclude that the effects of range shifting predominate, but considering species physiological responses is also important for understanding community size reorganization under climate warming.


Assuntos
Tamanho Corporal/fisiologia , Mariposas/fisiologia , Altitude , Animais , Bornéu , Mudança Climática , Malásia , Mariposas/anatomia & histologia
3.
Sci Rep ; 8(1): 11130, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042428

RESUMO

Although native-invasive species interactions have become a common mechanism shaping ecosystems, whether these interactions shift under warming remains unclear. To investigate how warming may affect native and invasive species separately and together (intraspecific and interspecific competition, respectively) and whether any warming impact is resource dependent, we examined the performance of two competing herbivores (native Pieris canidia and invasive P. rapae) on two common host plants under three temperature settings (control, 3 °C, and 6 °C warming using environmental chambers). The results revealed that warming benefited the development and growth of both Pieris under intraspecific competition, but the benefits were host-plant dependent. Notably, the native or invasive Pieris gained an advantage from interspecific competition (host-plant dependent), but warming neutralized the competitive advantages of either Pieris species. These findings raise the possibility that warming-induced shifts in competitive status may become a crucial mechanism shaping ecosystems worldwide, because most ecosystems are challenged by species invasion and warming. Moreover, this study revealed a discrepancy in species thermal performance between intra- and interspecific competition. Therefore, to predict native-invasive species competition under warming, current thermal performance applications should use species performance curves derived from interspecific rather than intraspecific competition studies (although the latter is more readily available).


Assuntos
Comportamento Competitivo/fisiologia , Ecossistema , Herbivoria/fisiologia , Lepidópteros/fisiologia , Animais , Interações Hospedeiro-Patógeno/fisiologia , Espécies Introduzidas , Plantas
4.
Sci Rep ; 7(1): 941, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28424477

RESUMO

Understanding warming impact on herbivores facilitates predicting plant/crop dynamics in natural/agricultural systems. However, it remains unclear how warming will affect herbivore population size and population composition, consequently altering herbivore colonization in a tri-trophic system (plant-herbivore-predator or crop-pest-biocontrol agent). We studied a soybean-aphid-lady beetle system, by conducting (1) a laboratory warming experiment to examine warming impact (+2 °C or +4 °C) on the aphid population size and composition (alate proportion), and (2) a field colonization experiment to examine whether the warming-induced effect subsequently interacts with predators (lady beetles) in affecting aphid colonization. The results showed that warming affected the initial aphid population composition (reduced alate proportion) but not population size; this warming-induced effect strengthened the top-down control by lady beetles and slowing aphid colonization. In other words, biocontrol on crop pests by predators could improve under 2-4 °C warming. Furthermore, aphid colonization was affected by an interaction between the alate proportion and predator (lady beetle) presence. This study suggests that warming affects herbivore population composition and likely mediates top-down control on herbivore colonization by predators. This mechanism may be crucial but underappreciated in climate change ecology because population composition (wing form, sex ratio, age/body size structure) shifts in many species under environmental change.


Assuntos
Besouros/fisiologia , Glycine max/parasitologia , Comportamento Predatório , Animais , Mudança Climática , Besouros/crescimento & desenvolvimento , Herbivoria , Densidade Demográfica , Dinâmica Populacional
5.
PLoS One ; 8(10): e76672, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24116133

RESUMO

Pulse disturbances and habitat patch size can determine community composition independently or in concert, and may be particularly influential on small spatial scales for organisms with low mobility. In a field experiment, we investigated whether the effects of a pulsed disturbance that simulated a grazing event varied with habitat patch size. We focused on the short-term responses of multiple co-occurring emergent salt marsh arthropods with differing levels of mobility and dispersal potential. As part of a marsh restoration project, two types of emergent marsh structures were created: small circular mounds (0.5 m diameter) separated by several meters of aquatic habitat, and larger, elongated terraces (>50 m long). Study plots (0.25 m(2)) were established on both structures; in a subset of plots, we simulated a pulsed grazing disturbance event by clipping the aboveground tissue of emergent plants, primarily Spartina alterniflora. At the end of the two-month recovery period, Ischnodemus (Hemiptera: Blissidae) density was over 50% lower in disturbed treatments within both large (terrace) and small (mound) patches. Predatory spider treatment responses were similar to Ischnodemus responses, suggesting a trophic relationship between those two arthropod groups. Alternatively, spiders may have been directly affected by the loss of shelter in the disturbed plots. Prokelisia (Homoptera: Delphacidae), which are generally more mobile than Ischnodemus, were not affected by disturbance treatment or by patch size, suggesting the potential for rapid recolonization following disturbance. Larval stem borers decreased by an order of magnitude in disturbed plots, but only in the large patches. In general, the disturbance effects of vegetation removal on arthropod density and community composition were stronger than patch size effects, and there were few interactions between pulsed disturbance and patch size. Rather, emergent marsh arthropod responses to disturbance and habitat area treatments were linked to the dispersal potential and mobility of each individual taxon.


Assuntos
Artrópodes/fisiologia , Ecossistema , Cadeia Alimentar , Áreas Alagadas , Animais , Conservação dos Recursos Naturais/métodos , Hemípteros/fisiologia , Poaceae/fisiologia , Densidade Demográfica , Dinâmica Populacional , Aranhas/fisiologia , Fatores de Tempo
6.
PLoS One ; 8(3): e59829, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23533653

RESUMO

High-latitude plants are often more palatable to herbivores than low-latitude conspecifics. Does increased plant palatability lead to better herbivore performance? Our field and laboratory work investigated (A) whether high-latitude plants have traits indicating that they should be higher-quality foods for herbivores; (B) whether geographic differences in plant quality are more important than local adaptation of herbivores. We studied 3 plant species and 6 invertebrate herbivores in U.S. Atlantic Coast. Past studies had shown high-latitude individuals of these plants are more palatable than low-latitude conspecifics. We documented plant traits and herbivore performance (body size) in the field across latitude. We collected individuals from different latitudes for factorial (plant region x herbivore region) laboratory experiments, examining how herbivore performance was affected by plant region, herbivore region, and their interaction (i.e., local adaptation). Field surveys suggested high-latitude plants were likely of higher quality to herbivores. Leaf nitrogen content in all plant species increased toward high latitudes, consistent with lower leaf C/N and higher leaf chlorophyll content at high latitudes. Furthermore, leaf toughness decreased toward higher latitudes in 1 species. The body size of 4 herbivore species increased with latitude, consistent with high-latitude leaves being of higher quality, while 2 grasshopper species showed the opposite pattern, likely due to life-history constraints. In the laboratory, high-latitude plants supported better performance in 4 herbivore species (marginal in the 5th). The geographic region where herbivores were collected affected herbivore performance in all 6 species; however, the pattern was mixed, indicating a lack of local adaptation by herbivores to plants from their own geographic region. Our results suggest that more-palatable plants at high latitudes support better herbivore growth. Given that geographic origin of either plants or herbivores can affect herbivore performance, the nature of plant-herbivore interactions is likely to change if climate change "reshuffles" plant and herbivore populations across latitude.


Assuntos
Herbivoria , Plantas , Animais , Invertebrados , Estados Unidos
7.
Biol Rev Camb Philos Soc ; 88(2): 327-48, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23217156

RESUMO

The sustainability of ecosystem services depends on a firm understanding of both how organisms provide these services to humans and how these organisms will be altered with a changing climate. Unquestionably a dominant feature of most ecosystems, invertebrates affect many ecosystem services and are also highly responsive to climate change. However, there is still a basic lack of understanding of the direct and indirect paths by which invertebrates influence ecosystem services, as well as how climate change will affect those ecosystem services by altering invertebrate populations. This indicates a lack of communication and collaboration among scientists researching ecosystem services and climate change effects on invertebrates, and land managers and researchers from other disciplines, which becomes obvious when systematically reviewing the literature relevant to invertebrates, ecosystem services, and climate change. To address this issue, we review how invertebrates respond to climate change. We then review how invertebrates both positively and negatively influence ecosystem services. Lastly, we provide some critical future directions for research needs, and suggest ways in which managers, scientists and other researchers may collaborate to tackle the complex issue of sustaining invertebrate-mediated services under a changing climate.


Assuntos
Mudança Climática , Ecossistema , Invertebrados/fisiologia , Animais , Conservação dos Recursos Naturais
8.
Am Nat ; 175(2): 269-76, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20014953

RESUMO

Bergmann's rule (body size increases with latitude) has long interested biologists; however, its mechanism remains unclear. An overlooked mechanism (latitudinal variation in plant quality) might help explain Bergmann's rule. We studied three herbivores. In the field, the planthopper Prokelisia and the sea hare Aplysia, but not the long-horned grasshopper Orchelimum, were larger at high latitudes, following Bergmann's rule. In the laboratory, all three species grew larger or faster on high-latitude plants. High-latitude diets increased Prokelisia size and Aplysia growth rates by 8% and 72%, respectively, enough to explain the increase in field body size toward high latitudes. Therefore, latitudinal variation in herbivore body size could be influenced by latitudinal variation in plant quality, which may directly or indirectly also affect body size in detritivores, parasitoids, and predators. Studies of Bergmann's rule should consider the influence of biotic factors on body size in addition to abiotic factors such as temperature and precipitation.


Assuntos
Aplysia/fisiologia , Tamanho Corporal/fisiologia , Dieta , Ecossistema , Gafanhotos/fisiologia , Hemípteros/fisiologia , Animais , Demografia
9.
Ecology ; 90(1): 183-95, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19294924

RESUMO

Despite long-standing interest in latitudinal variation in ecological patterns and processes, there is to date weak and conflicting evidence that herbivore pressure varies with latitude. We used three approaches to examine latitudinal variation in herbivore pressure in Atlantic Coast salt marshes, focusing on five abundant plant taxa: the grass Spartina alterniflora, the congeneric rushes Juncus gerardii and J. roemerianus, the forb Solidago sempervirens, and the shrubs Iva frutescens and Baccharis halimifolia. Herbivore counts indicated that chewing and gall-making herbivores were typically > or = 10 times more abundant at low-latitude sites than at high-latitude sites, but sucking herbivores did not show a clear pattern. For two herbivore taxa (snails and tettigoniid grasshoppers), correctly interpreting latitudinal patterns required an understanding of the feeding ecology of the species, because the species common at high latitudes did not feed heavily on plant leaves whereas the related species common at low latitudes did. Damage to plants from chewing herbivores was 2-10 times greater at low-latitude sites than at high-latitude sites. Damage to transplanted "phytometer" plants was 100 times greater for plants transplanted to low- than to high-latitude sites, and two to three times greater for plants originating from high- vs. low-latitude sites. Taken together, these results provide compelling evidence that pressure from chewing and gall-making herbivores is greater at low vs. high latitudes in Atlantic Coast salt marshes. Sucking herbivores do not show this pattern and deserve greater study. Selective pressure due to greater herbivore damage at low latitudes is likely to partially explain documented patterns of low plant palatability to chewing herbivores and greater plant defenses at low latitudes, but other factors may also play a role in mediating these geographic patterns.


Assuntos
Demografia , Insetos/fisiologia , Plantas , Áreas Alagadas , Animais , Oceano Atlântico , Estados Unidos
10.
Ecology ; 89(6): 1714-22, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18589535

RESUMO

Although omnivory is common in nature, its impact on trophic interactions is variable. Predicting the food web consequences of omnivory is complicated because omnivores can simultaneously produce conflicting direct and indirect effects on the same species or trophic level. We conducted field and laboratory experiments testing the top-down impacts of an omnivorous salt marsh crab, Armases cinereum, on the shrub Iva frutescens and its herbivorous and predatory arthropod fauna. Armases is a "true omnivore," consuming both Iva and arthropods living on Iva. We hypothesized that Armases would benefit Iva through a top-down trophic cascade, and that this benefit would be stronger than the direct negative effect of Armases on Iva. A field experiment on Sapelo Island, Georgia (USA), supported this hypothesis. Although Armases suppressed predators (spiders), it also suppressed herbivores (aphids), and benefited Iva, increasing leaf number, and reducing the proportion of dead shoots. A one-month laboratory experiment, focusing on the most common species in the food web, also supported this hypothesis. Armases strongly suppressed aphids and consumed fewer Iva leaves if aphids were available as an alternate diet. Armases gained more body mass if they could feed on aphids as well as on Iva. Although Armases had a negative effect on Iva when aphids were not present, Armases benefited Iva if aphids were present, because Armases controlled aphid populations, releasing Iva from herbivory. Although Armases is an omnivore, it produced strong top-down forces and a trophic cascade because it fed preferentially on herbivores rather than plants when both were available. At the same time, the ability of Armases to subsist on a plant diet allows it to persist in the food web when animal food is not available. Because omnivores feed on multiple trophic levels, their effects on food webs may differ from those predicted by standard trophic models that assume that each species feeds only on a single trophic level. To better understand the complexity of real food webs, the variable feeding habits and feeding preferences of different omnivorous species must be taken into consideration.


Assuntos
Asteraceae/fisiologia , Braquiúros/fisiologia , Comportamento Alimentar/fisiologia , Cadeia Alimentar , Áreas Alagadas , Animais , Afídeos/fisiologia , Feminino , Masculino , Aranhas/fisiologia , Aumento de Peso
11.
Oecologia ; 140(4): 591-600, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15252727

RESUMO

Current theories of plant-herbivore interactions suggest that plants may differ in palatability to herbivores as a function of abiotic stress; however, studies of these theories have produced mixed results. We compared the palatability of eight common salt marsh plants that occur across elevational and salinity stress gradients to six common leaf-chewing herbivores to determine patterns of plant palatability. The palatability of every plant species varied across gradients of abiotic stress in at least one comparison, and over half of the comparisons indicated significant differences in palatability. The direction of the preferences, however, was dependent on the plant and herbivore species studied, suggesting that different types of stress affect plants in different ways, that different plant species respond differently to stress, and that different herbivore species measure plant quality in different ways. Overall, 51% of the variation in the strength of the feeding preferences could be explained by a knowledge of the strength of the stress gradient and the type of gradient, plant and herbivore studied. This suggests that the prospects are good for a more complex, conditional theory of plant stress and herbivore feeding preferences that is based on a mechanistic understanding of plant physiology and the factors underlying herbivore feeding preferences.


Assuntos
Decápodes/fisiologia , Meio Ambiente , Comportamento Alimentar/fisiologia , Insetos/fisiologia , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Animais , Georgia , Análise de Regressão , Cloreto de Sódio , Texas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA