Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Space Phys ; 121(3): 2171-2184, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-27830111

RESUMO

The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X-Ray Spectrometer and Gamma-Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near-tail region of Mercury's magnetosphere and are subsequently "injected" onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form "quasi-trapped" populations.

2.
Science ; 333(6051): 1865-8, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21960629

RESUMO

The MESSENGER spacecraft began detecting energetic electrons with energies greater than 30 kilo-electron volts (keV) shortly after its insertion into orbit about Mercury. In contrast, no energetic protons were observed. The energetic electrons arrive as bursts lasting from seconds to hours and are most intense close to the planet, distributed in latitude from the equator to the north pole, and present at most local times. Energies can exceed 200 keV but often exhibit cutoffs near 100 keV. Angular distributions of the electrons about the magnetic field suggest that they do not execute complete drift paths around the planet. This set of characteristics demonstrates that Mercury's weak magnetic field does not support Van Allen-type radiation belts, unlike all other planets in the solar system with internal magnetic fields.

3.
Science ; 329(5992): 665-8, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20647422

RESUMO

During MESSENGER's third flyby of Mercury, the magnetic field in the planet's magnetic tail increased by factors of 2 to 3.5 over intervals of 2 to 3 minutes. Magnetospheric substorms at Earth are powered by similar tail loading, but the amplitude is lower by a factor of approximately 10 and typical durations are approximately 1 hour. The extreme tail loading observed at Mercury implies that the relative intensity of substorms must be much larger than at Earth. The correspondence between the duration of tail field enhancements and the characteristic time for the Dungey cycle, which describes plasma circulation through Mercury's magnetosphere, suggests that such circulation determines the substorm time scale. A key aspect of tail unloading during terrestrial substorms is the acceleration of energetic charged particles, but no acceleration signatures were seen during the MESSENGER flyby.

4.
Science ; 324(5927): 606-10, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19407194

RESUMO

Solar wind energy transfer to planetary magnetospheres and ionospheres is controlled by magnetic reconnection, a process that determines the degree of connectivity between the interplanetary magnetic field (IMF) and a planet's magnetic field. During MESSENGER's second flyby of Mercury, a steady southward IMF was observed and the magnetopause was threaded by a strong magnetic field, indicating a reconnection rate ~10 times that typical at Earth. Moreover, a large flux transfer event was observed in the magnetosheath, and a plasmoid and multiple traveling compression regions were observed in Mercury's magnetotail, all products of reconnection. These observations indicate that Mercury's magnetosphere is much more responsive to IMF direction and dominated by the effects of reconnection than that of Earth or the other magnetized planets.

5.
Science ; 321(5885): 85-9, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18599776

RESUMO

Observations by MESSENGER show that Mercury's magnetosphere is immersed in a comet-like cloud of planetary ions. The most abundant, Na+, is broadly distributed but exhibits flux maxima in the magnetosheath, where the local plasma flow speed is high, and near the spacecraft's closest approach, where atmospheric density should peak. The magnetic field showed reconnection signatures in the form of flux transfer events, azimuthal rotations consistent with Kelvin-Helmholtz waves along the magnetopause, and extensive ultralow-frequency wave activity. Two outbound current sheet boundaries were observed, across which the magnetic field decreased in a manner suggestive of a double magnetopause. The separation of these current layers, comparable to the gyro-radius of a Na+ pickup ion entering the magnetosphere after being accelerated in the magnetosheath, may indicate a planetary ion boundary layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA