Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Tissue Res ; 396(2): 177-195, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38366086

RESUMO

Cannabidiol is a major component of cannabis but without known psychoactive properties. A wide range of properties have been attributed to it, such as anti-inflammatory, analgesic, anti-cancer, anti-seizure and anxiolytic. However, being a fairly new compound in its purified form, little is known about cannabidiol brain entry, especially during development. Sprague Dawley rats at four developmental ages: embryonic day E19, postnatal day P4 and P12 and non-pregnant adult females were administered intraperitoneal cannabidiol at 10 mg/kg with [3H] labelled cannabidiol. To investigate the extent of placental transfer, the drug was injected intravenously into E19 pregnant dams. Levels of [3H]-cannabidiol in blood plasma, cerebrospinal fluid and brain were estimated by liquid scintillation counting. Plasma protein binding of cannabidiol was identified by polyacrylamide gel electrophoresis and its bound and unbound fractions measured by ultrafiltration. Using available RNA-sequencing datasets of E19 rat brain, choroid plexus and placenta, as well as P5 and adult brain and choroid plexus, expression of 13 main cannabidiol receptors was analysed. Results showed that cannabidiol rapidly entered both the developing and adult brains. Entry into CSF was more limited. Its transfer across the placenta was substantially restricted as only about 50% of maternal blood plasma cannabidiol concentration was detected in fetal plasma. Albumin was the main, but not exclusive, cannabidiol binding protein at all ages. Several transcripts for cannabidiol receptors were expressed in age- and tissue-specific manner indicating that cannabidiol may have different functional effects in the fetal compared to adult brain.


Assuntos
Encéfalo , Canabidiol , Ratos Sprague-Dawley , Animais , Canabidiol/farmacologia , Canabidiol/sangue , Feminino , Encéfalo/metabolismo , Gravidez , Ratos , Feto/metabolismo , Placenta/metabolismo , Animais Recém-Nascidos
2.
J Thromb Haemost ; 22(3): 785-793, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37944898

RESUMO

BACKGROUND: Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare complication of adenovirus vector-based COVID-19 vaccines. VITT is associated with markedly raised levels of D-dimer; yet, how VITT modulates the fibrinolytic system is unknown. OBJECTIVES: We aimed to compare changes in fibrinolytic activity in plasma from patients with VITT, patients diagnosed with venous thromboembolism (VTE) after vaccination but without VITT (VTE-no VITT), and healthy vaccinated controls. METHODS: Plasma levels of plasmin-antiplasmin (PAP) complexes, plasminogen, and alpha-2-antiplasmin (α2AP) from 10 patients with VITT, 10 patients with VTE-no VITT, and 14 healthy vaccinated controls were evaluated by enzyme-linked immunosorbent assay and/or Western blotting. Fibrinolytic capacity was evaluated by quantitating PAP levels at baseline and after ex vivo plasma stimulation with 50-nM tissue-type plasminogen activator (tPA) or urokinase for 5 minutes. RESULTS: Baseline PAP complex levels in control and VTE-no VITT individuals were similar but were ∼7-fold higher in plasma from patients with VITT (P < .0001). VITT samples also revealed consumption of α2AP and fibrinogenolysis consistent with a hyperfibrinolytic state. Of interest, VITT plasma produced significantly higher PAP levels after ex vivo treatment with tPA, but not urokinase, compared to the other groups, indicative of increased fibrinolytic potential. This was not due to D-dimer as addition of D-dimer to VTE-no VITT plasma failed to potentiate tPA-induced PAP levels. CONCLUSION: A marked hyperfibrinolytic state occurs in patients with VITT, evidenced by marked elevations in PAP, α2AP consumption, and fibrinogenolysis. An unidentified plasma cofactor that selectively potentiates tPA-mediated plasminogen activation also appears to exist in the plasma of patients with VITT.


Assuntos
Antifibrinolíticos , Transtornos da Coagulação Sanguínea , Trombocitopenia , Trombose , Tromboembolia Venosa , Humanos , Antifibrinolíticos/farmacologia , Vacinas contra COVID-19/efeitos adversos , Fibrinolisina/metabolismo , Fibrinólise , Plasminogênio , Ativador de Plasminogênio Tecidual/farmacologia , Ativador de Plasminogênio Tipo Uroquinase/farmacologia
3.
Res Pract Thromb Haemost ; 7(6): 102166, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37694270

RESUMO

Background: Symptomatic intracerebral hemorrhage (sICH) commonly occurs in patients with cerebral amyloid angiopathy (CAA). Amyloid also initiates plasminogen activation and might promote sICH. Objectives: As amyloid-driven plasmin formation can be blocked by tranexamic acid (TXA), we aimed to evaluate the biodistribution and long-term consequences of TXA on brain amyloid-beta (Aß) levels, inflammation, and neurologic function in APP/PS1 mice. Methods: APP/PS1 mice overexpressing the mutant human amyloid precursor protein and wild-type littermates were randomized to TXA (20 mg/mL) or placebo in the drinking water for 6 months. TXA in plasma and various organs was determined by liquid chromatography-mass spectrometry. Plasmin activity assays were performed to evaluate changes in fibrinolytic activity. Neurologic function was evaluated by Y-maze and parallel rod floor testing. Proximity ligation-based immunoassays were used to quantitate changes of 92 biomarkers of inflammation. Brain Aß levels were assessed by immunohistochemistry. Results: Long-term oral TXA administration inhibited fibrinolysis. TXA accumulated in the kidney (19.4 ± 11.2 µg/g) with 2- to 5-fold lower levels seen in the lung, spleen, and liver. TXA levels were lowest in the brain (0.28 ± 0.01 µg/g). Over 6 months, TXA had no discernible effect on motor coordination, novelty preference, or brain Aß levels. TXA reduced plasma levels of epithelial cell adhesion molecule and increased CCL20. Conclusion: Long-term TXA treatment does not alter brain Aß levels or impact neurologic behavior in mice predisposed to amyloid deposition and had minor effects on the levels of inflammatory mediators. This finding supports the safety of TXA and lays the foundation for TXA as a novel treatment to reduce sICH in patients with CAA.

4.
Blood Adv ; 7(4): 561-574, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35482909

RESUMO

Thrombolysis with tissue-type plasminogen activator (tPA) remains the main treatment for acute ischemic stroke. Nevertheless, tPA intervention is limited by a short therapeutic window, low recanalization rates, and a risk of intracranial hemorrhage (ICH), highlighting the clinical demand for improved thrombolytic drugs. We examined a novel thrombolytic agent termed "SCE5-scuPA," comprising a single-chain urokinase plasminogen activator (scuPA) fused with a single-chain antibody (SCE5) that targets the activated glycoprotein IIb/IIIa platelet receptor, for its effects in experimental stroke. SCE5-scuPA was first tested in a whole blood clot degradation assay to show the benefit of platelet-targeted thrombolysis. The tail bleeding time, blood clearance, and biodistribution were then determined to inform the use of SCE5-scuPA in mouse models of photothrombotic stroke and middle cerebral artery occlusion against tenecteplase. The impacts of SCE5-scuPA on motor function, ICH, blood-brain barrier (BBB) integrity, and immunosuppression were evaluated. Infarct size was measured by computed tomography imaging and magnetic resonance imaging. SCE5-scuPA enhanced clot degradation ex vivo compared with its nonplatelet-targeting control. The maximal SCE5-scuPA dose that maintained hemostasis and a rapid blood clearance was determined. SCE5-scuPA administration both before and 2 hours after photothrombotic stroke reduced the infarct volume. SCE5-scuPA also improved neurologic deficit, decreased intracerebral blood deposits, preserved the BBB, and alleviated immunosuppression poststroke. In middle cerebral artery occlusion, SCE5-scuPA did not worsen stroke outcomes or cause ICH, and it protected the BBB. Our findings support the ongoing development of platelet-targeted thrombolysis with SCE5-scuPA as a novel emergency treatment for acute ischemic stroke with a promising safety profile.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Trombose , Camundongos , Animais , AVC Isquêmico/complicações , AVC Isquêmico/tratamento farmacológico , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Distribuição Tecidual , Terapia Trombolítica/efeitos adversos , Fibrinolíticos/uso terapêutico , Acidente Vascular Cerebral/etiologia , Ativador de Plasminogênio Tipo Uroquinase , Trombose/tratamento farmacológico , Complexo Glicoproteico GPIIb-IIIa de Plaquetas
5.
Thromb J ; 20(1): 17, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410340

RESUMO

BACKGROUND: Tranexamic acid (TXA) is an antifibrinolytic agent frequently used in elective surgery to reduce blood loss. We recently found it also acts as a potent immune-modulator in patients undergoing cardiac surgery. METHODS: Patients undergoing lower limb surgery were enrolled into the "Tranexamic Acid in Lower Limb Arthroplasty" (TALLAS) pilot study. The cellular immune response was characterised longitudinally pre- and post-operatively using full blood examination (FBE) and comprehensive immune cell phenotyping by flowcytometry. Red blood cells and platelets were determined in the FBE and levels of T cell cytokines and the plasmin-antiplasmin complex determined using ELISA. RESULTS: TXA administration increased the proportion of circulating CD141+ conventional dendritic cells (cDC) on post-operative day (POD) 3. It also reduced the expression of CD83 and TNFR2 on classical monocytes and levels of circulating IL-10 at the end of surgery (EOS) time point, whilst increasing the expression of CCR4 on natural killer (NK) cells at EOS, and reducing TNFR2 on POD-3 on NK cells. Red blood cells and platelets were decreased to a lower extent at POD-1 in the TXA group, representing reduced blood loss. CONCLUSION: In this investigation we have extended our examination on the immunomodulatory effects of TXA in surgery by also characterising the end of surgery time point and including B cells and neutrophils in our immune analysis, elucidating new immunophenotypic changes in phagocytes as well as NK cells. This study enhances our understanding of TXA-mediated effects on the haemostatic and immune response in surgery, validating changes in important functional immune cell subsets in orthopaedic patients.

6.
Heart Lung Circ ; 31(3): 439-446, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34627673

RESUMO

BACKGROUND: Postoperative pneumonia is a major cause of morbidity and mortality following cardiac surgery. The inflammatory response to cardiac surgery has been widely studied, but specific mechanisms for postoperative pneumonia have not been determined. Tranexamic acid is renowned for its effect on bleeding but can also modulate inflammatory processes. Cardiac surgery is known to release mitochondrial DAMPs (mtDAMPs) and is linked to postoperative inflammation and atrial fibrillation. We speculated that mtDAMPs might be related to postoperative pneumonia and that this might be modulated by tranexamic acid. METHODS: Forty-one (41) patients from the Aspirin and Tranexamic Acid for Coronary Artery Surgery (ATACAS) trial were studied. Levels of mitochondrial DNA, matrix metallopeptidase 9 (MMP-9) and neutrophil elastase (NE) were determined in plasma preoperatively, at 24 and 72 hours post-surgery and correlated with clinical outcome. RESULTS: mtDNA was significantly elevated postoperatively in the placebo and tranexamic acid (TXA) groups. Neutrophil elastase increased immediately postoperatively and at 24 hours. MMP-9 was elevated in the placebo group early postoperatively and in the TXA group at the immediate postoperative time point and after 24 hours. Six (6) of the 41 (14.6%) patients subsequently developed pneumonia. mtDNA levels were significantly increased at the early postoperative period and the 24-hour time point in patients with pneumonia. CONCLUSIONS: Cardiac surgery releases mtDNA, increases MMP-9 and NE and this was not influenced by TXA. Inflammation postoperatively might be linked to pneumonia since mtDNA was further elevated in these patients. Due to the low number of individuals developing pneumonia, further studies are warranted to clearly identify whether TXA impacts on the inflammatory response in postoperative pneumonia.


Assuntos
Antifibrinolíticos , Pneumonia , Ácido Tranexâmico , Antifibrinolíticos/efeitos adversos , Perda Sanguínea Cirúrgica , Ponte de Artéria Coronária , DNA Mitocondrial/genética , Humanos , Elastase de Leucócito , Metaloproteinase 9 da Matriz , Pneumonia/etiologia , Ácido Tranexâmico/efeitos adversos , Resultado do Tratamento
7.
Blood Coagul Fibrinolysis ; 32(3): 172-179, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33443933

RESUMO

Tranexamic acid (TXA) is a lysine analogue that inhibits plasmin generation and has been used for decades as an antifibrinolytic agent to reduce bleeding. Recent reports have indicated that TXA can paradoxically promote plasmin generation. Blood was obtained from 41 cardiac surgical patients randomly assigned to TXA or placebo before start of surgery (preOP), at the end of surgery (EOS), then again on postoperative day 1 (POD-1) as well as POD-3. Plasma levels of tissue-type plasminogen activator (t-PA), urokinase (u-PA), the plasmin-antiplasmin (PAP) complex, as well as t-PA and u-PA-induced clot lysis assays were then determined. Clot lysis and PAP complex levels were also assessed in healthy volunteers before and at various time points after taking 1 g TXA orally. Surgery induced an increase in circulating t-PA, yet not u-PA at EOS. t-PA levels were unaffected by TXA; however, u-PA levels were significantly reduced in patients on POD-3. t-PA and u-PA-induced clot lysis were both inhibited in plasma from TXA-treated patients. In contrast, PAP complex formation, representing plasmin generation, was unexpectedly enhanced in the plasma of patients administered TXA at the EOS time point. In healthy volunteers, oral TXA effectively blocked fibrinolysis within 30 min and blockade was sustained for 8 h. However, TXA also increased PAP levels in volunteers 4 h after administration. Our findings demonstrate that TXA can actually augment PAP complex formation, consistent with an increase in plasmin generation in vivo despite the fact that it blocks fibrinolysis within 30 min. This may have unanticipated consequences in vivo.


Assuntos
Antifibrinolíticos/farmacologia , Fibrinolisina/análise , Fibrinólise/efeitos dos fármacos , Ácido Tranexâmico/farmacologia , alfa 2-Antiplasmina/análise , Idoso , Antifibrinolíticos/uso terapêutico , Feminino , Fibrinolisina/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Período Pré-Operatório , Ativador de Plasminogênio Tecidual/sangue , Ácido Tranexâmico/uso terapêutico , Ativador de Plasminogênio Tipo Uroquinase/sangue , alfa 2-Antiplasmina/metabolismo
8.
Front Neurol ; 11: 577272, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363504

RESUMO

Background: Tissue-type plasminogen activator (t-PA) has been the mainstay of therapeutic thrombolysis for patients with acute ischaemic stroke (AIS). However, t-PA can cause devastating intracerebral hemorrhage. t-PA can also influence the CNS in part by modulation of BBB permeability. Complement activation also occurs after AIS and has also been reported to increase BBB permeability. The complement components, C3 and C5, can also be activated by t-PA via plasmin formation and cell intrinsic complement may be involved in this process. Tenecteplase (TNK-tPA) is a t-PA variant with a longer plasma half-life, yet the ability of TNK-tPA to modulate the BBB and complement is less clear. Aim: To evaluate the effect of C5 and C5a-receptor 1 (C5aR1) inhibitors on t-PA- and TNK-tPA-mediated opening of the BBB. Methods: We used an in vitro model of the BBB where human brain endothelial cells and human astrocytes were co-cultured on the opposite sides of a porous membrane assembled in transwell inserts. The luminal (endothelial) compartment was stimulated with t-PA or TNK-tPA together with plasminogen, in the presence of PMX205 (a non-competitive C5aR1 antagonist), Avacopan (a competitive C5aR1 antagonist) or Eculizumab (a humanized monoclonal inhibitor of human C5). BBB permeability was assessed 5 and 24 h later. Immunofluorescence was also used to detect changes in C5 and C5aR1 expression in endothelial cells and astrocytes. Results: PMX205, but not Avacopan or Eculizumab, blocked t-PA-mediated increase in BBB permeability at both the 5 and 24 h time points. PMX205 also blocked TNK-tPA-mediated increase in BBB permeability. Immunofluorescence analysis revealed intracellular staining of C5 in both cell types. C5aR1 expression was also detected on the cell surfaces and also located intracellularly in both cell types. Conclusion: t-PA and TNK-tPA-mediated increase in BBB permeability involves C5aR1 receptor activation from cell-derived C5a. Selective inhibitors of C5aR1 may have therapeutic potential in AIS.

9.
Front Neurol ; 11: 589628, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224099

RESUMO

Rationale: More than half of patients who receive thrombolysis for acute ischaemic stroke fail to recanalize. Elucidating biological factors which predict recanalization could identify therapeutic targets for increasing thrombolysis success. Hypothesis: We hypothesize that individual patient plasmin potential, as measured by in vitro response to recombinant tissue-type plasminogen activator (rt-PA), is a biomarker of rt-PA response, and that patients with greater plasmin response are more likely to recanalize early. Methods: This study will use historical samples from the Barcelona Stroke Thrombolysis Biobank, comprised of 350 pre-thrombolysis plasma samples from ischaemic stroke patients who received serial transcranial-Doppler (TCD) measurements before and after thrombolysis. The plasmin potential of each patient will be measured using the level of plasmin-antiplasmin complex (PAP) generated after in-vitro addition of rt-PA. Levels of antiplasmin, plasminogen, t-PA activity, and PAI-1 activity will also be determined. Association between plasmin potential variables and time to recanalization [assessed on serial TCD using the thrombolysis in brain ischemia (TIBI) score] will be assessed using Cox proportional hazards models, adjusted for potential confounders. Outcomes: The primary outcome will be time to recanalization detected by TCD (defined as TIBI ≥4). Secondary outcomes will be recanalization within 6-h and recanalization and/or haemorrhagic transformation at 24-h. This analysis will utilize an expanded cohort including ~120 patients from the Targeting Optimal Thrombolysis Outcomes (TOTO) study. Discussion: If association between proteolytic response to rt-PA and recanalization is confirmed, future clinical treatment may customize thrombolytic therapy to maximize outcomes and minimize adverse effects for individual patients.

10.
J Thromb Haemost ; 18(10): 2658-2671, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32668057

RESUMO

BACKGROUND: Tranexamic acid (TXA) is an anti-fibrinolytic agent used to reduce bleeding in various conditions including traumatic brain injury (TBI). As the fibrinolytic system also influences the central nervous system and the immune response, TXA may also modulate these parameters following TBI. OBJECTIVES: To determine the effect of TXA on blood-brain barrier (BBB) integrity and changes in immune and motor function in male and female mice subjected to TBI. METHODS: Wild-type and plasminogen deficient (plg-/-) mice were subjected to TBI then administered either TXA/vehicle. The degree of BBB breakdown, intracerebral hemorrhage (ICH), motor dysfunction, and changes in inflammatory subsets in blood and brain were determined. RESULTS AND CONCLUSIONS: Tranexamic acid significantly reduced BBB breakdown, and increased blood neutrophils in male mice 3 hours post-TBI. In contrast, TXA treatment of female mice increased BBB permeability and ICH but had no effect on blood neutrophils at the same time-point. TXA improved motor function in male mice but still increased BBB breakdown in female mice 24 hours post-TBI. Brain urokinase-type plasminogen activator (u-PA) antigen and activity levels were significantly higher in injured females compared to males. Because TXA can promote a pro-fibrinolytic effect via u-PA, these sex differences may be related to brain u-PA levels. TXA also increased monocyte subsets and dendritic cells in the injured brain of wild-type male mice 1 week post-TBI. Plg-/- mice of both sexes had reduced BBB damage and were protected from TBI irrespective of treatment indicating that TXA modulation of the BBB is plasmin-dependent. In conclusion, TXA is protective post-TBI but only in male mice.


Assuntos
Antifibrinolíticos , Lesões Encefálicas Traumáticas , Ácido Tranexâmico , Animais , Antifibrinolíticos/farmacologia , Barreira Hematoencefálica , Lesões Encefálicas Traumáticas/tratamento farmacológico , Feminino , Imunidade , Masculino , Camundongos , Permeabilidade , Ácido Tranexâmico/farmacologia
11.
Cell Rep ; 29(5): 1178-1191.e6, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31665632

RESUMO

Traumatic brain injury (TBI) leaves many survivors with long-term disabilities. A prolonged immune response in the brain may cause neurodegeneration, resulting in chronic neurological disturbances. In this study, using a TBI mouse model, we correlate changes in the local immune response with neurodegeneration/neurological dysfunction over an 8-month period. Flow cytometric analysis reveals a protracted increase in effector/memory CD8+ T cells (expressing granzyme B) in the injured brain. This precedes interleukin-17+CD4+ T cell infiltration and is associated with progressive neurological/motor impairment, increased circulating brain-specific autoantibodies, and myelin-related pathology. Genetic deficiency or pharmacological depletion of CD8+ T cells, but not depletion of CD4+ T cells, improves neurological outcomes and produces a neuroprotective Th2/Th17 immunological shift, indicating a persistent detrimental role for cytotoxic T cells post-TBI. B cell deficiency results in severe neurological dysfunction and a heightened immune reaction. Targeting these adaptive immune cells offers a promising approach to improve recovery following TBI.


Assuntos
Lesões Encefálicas Traumáticas/imunologia , Encéfalo/patologia , Linfócitos T CD8-Positivos/imunologia , Ativação Linfocitária/imunologia , Imunidade Adaptativa , Animais , Autoanticorpos/sangue , Linfócitos B/imunologia , Comportamento Animal , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/fisiopatologia , Linfócitos T CD4-Positivos/imunologia , DNA/imunologia , Marcha , Memória Imunológica , Depleção Linfocítica , Masculino , Camundongos Endogâmicos C57BL , Bainha de Mielina/imunologia , Medula Espinal/patologia , Células Th17/imunologia , Fatores de Tempo , Microglobulina beta-2/deficiência , Microglobulina beta-2/metabolismo
12.
J Thromb Haemost ; 17(12): 2174-2187, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31393041

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is known to promote immunosuppression, making patients more susceptible to infection, yet potentially exerting protective effects by inhibiting central nervous system (CNS) reactivity. Plasmin, the effector protease of the fibrinolytic system, is now recognized for its involvement in modulating immune function. OBJECTIVE: To evaluate the effects of plasmin and tranexamic acid (TXA) on the immune response in wild-type and plasminogen-deficient (plg-/- ) mice subjected to TBI. METHODS: Leukocyte subsets in lymph nodes and the brain in mice post TBI were evaluated by flow cytometry and in blood with a hemocytometer. Immune responsiveness to CNS antigens was determined by Enzyme-linked Immunosorbent Spot (ELISpot) assay.  Fibrinolysis was determined by thromboelastography and measuring D-dimer and plasmin-antiplasmin complex levels. RESULTS: Plg-/-  mice, but not plg+/+  mice displayed increases in both the number and activation of various antigen-presenting cells and T cells in the cLN 1 week post TBI. Wild-type mice treated with TXA also displayed increased cellularity of the cLN 1 week post TBI together with increases in innate and adaptive immune cells. These changes occurred despite the absence of systemic hyperfibrinolysis or coagulopathy in this model of TBI. Importantly, neither plg deficiency nor TXA treatment enhanced the autoreactivity within the CNS. CONCLUSION: In the absence of systemic hyperfibrinolysis, plasmin deficiency or blockade with TXA increases migration and proliferation of conventional dendritic cells (cDCs) and various antigen-presenting cells and T cells in the draining cervical lymph node (cLN) post TBI. Tranexamic acid might also be clinically beneficial in modulating the inflammatory and immune response after TBI, but without promoting CNS autoreactivity.


Assuntos
Antifibrinolíticos/farmacologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Fibrinólise/efeitos dos fármacos , Imunidade Celular/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Linfonodos/efeitos dos fármacos , Ácido Tranexâmico/farmacologia , Animais , Encéfalo/imunologia , Encéfalo/patologia , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/patologia , Proliferação de Células/efeitos dos fármacos , Quimiotaxia de Leucócito/efeitos dos fármacos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Leucócitos/imunologia , Linfonodos/imunologia , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasminogênio/deficiência , Plasminogênio/genética
13.
J Neurotrauma ; 36(23): 3297-3308, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31140372

RESUMO

The antifibrinolytic agent, tranexamic acid (TXA), an inhibitor of plasmin formation, currently is evaluated to reduce bleeding in various conditions, including traumatic brain injury (TBI). Because plasmin is implicated in inflammation and immunity, we investigated the effects of plasmin inhibition on the immune response after TBI in the presence or absence of induced pneumonia. Wild-type mice treated with vehicle or TXA or mice deficient in plasminogen (plg-/-) underwent TBI using the controlled cortical impact model. Mice were then subjected to Staphylococcus aureus induced pneumonia and the degree of immune competence determined. Significant baseline changes in the innate immune cell profile were seen in plg-/- mice with increases in spleen weight and white blood cell counts, and elevation in plasma interleukin-6 levels. The plg-/- mice subjected to TBI displayed no additional changes in these parameters at the 72 h or one week time point post-TBI. The plg-/- mice subjected to TBI did not exhibit any further increase in susceptibility to endogenous infection. Pneumonia was induced by intratracheal instillation of S. aureus. The TBI did not worsen pneumonia symptoms or delay recovery in plg-/- mice. Similarly, in wild type mice, treatment with TXA did not impact on the ability of mice to counteract pneumonia after TBI. Administration of TXA after TBI and subsequent pneumonia, however, altered the number and surface marker expression of several myeloid and lymphoid cell populations, consistent with enhanced immune activation at the 72 h time point. This investigation confirms the immune-modulatory properties of TXA, thereby highlighting its effects unrelated to inhibition of fibrinolysis.


Assuntos
Lesões Encefálicas Traumáticas/imunologia , Imunidade Celular/imunologia , Depuração Mucociliar/imunologia , Pneumonia Bacteriana/imunologia , Infecções Estafilocócicas/imunologia , Ácido Tranexâmico/uso terapêutico , Animais , Antifibrinolíticos/farmacologia , Antifibrinolíticos/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Imunidade Celular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Depuração Mucociliar/efeitos dos fármacos , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus , Ácido Tranexâmico/farmacologia
14.
Blood Adv ; 3(10): 1598-1609, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31126915

RESUMO

Tranexamic acid (TXA) is an antifibrinolytic agent that blocks plasmin formation. Because plasmin is known to promote inflammatory and immunosuppressive responses, we explored the possibility that plasmin-mediated immunosuppression in patients undergoing cardiac surgery can be directly reversed by TXA and decrease postoperative infection rates. The modulatory effect of TXA on inflammatory cytokine levels and on innate immune cell activation were evaluated with multiplex enzyme-linked immunosorbent assay and flow cytometry, respectively. Postoperative infection rates were determined in patients undergoing cardiac surgery and randomized to TXA (ACTRN12605000557639; http://www.anzca.edu.au). We demonstrate that TXA-mediated plasmin blockade modulates the immune system and reduces surgery-induced immunosuppression in patients following cardiac surgery. TXA enhanced the expression of immune-activating markers while reducing the expression of immunosuppressive markers on multiple myeloid and lymphoid cell populations in peripheral blood. TXA administration significantly reduced postoperative infection rates, despite the fact that patients were being administered prophylactic antibiotics. This effect was independent of the effect of TXA at reducing blood loss. TXA was also shown to exert an immune-modulatory effect in healthy volunteers, further supporting the fibrin-independent effect of TXA on immune function and indicating that baseline plasmin levels contribute to the regulation of the immune system in the absence of any comorbidity or surgical trauma. Finally, the capacity of TXA to reduce infection rates, modulate the innate immune cell profile, and generate an antifibrinolytic effect overall was markedly reduced in patients with diabetes, demonstrating for the first time that the diabetic condition renders patients partially refractory to TXA.


Assuntos
Antifibrinolíticos/uso terapêutico , Transmissão de Doença Infecciosa/estatística & dados numéricos , Ácido Tranexâmico/uso terapêutico , Adulto , Antifibrinolíticos/farmacologia , Humanos , Período Pós-Operatório , Estudos Prospectivos , Ácido Tranexâmico/farmacologia , Voluntários
15.
Front Immunol ; 10: 591, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972077

RESUMO

Introduction: Acute ischemic stroke (AIS) is a potent trigger of immunosuppression, resulting in increased infection risk. While thrombolytic therapy with tissue-type plasminogen activator (t-PA) is still the only pharmacological treatment for AIS, plasmin, the effector protease, has been reported to suppress dendritic cells (DCs), known for their potent antigen-presenting capacity. Accordingly, in the major group of thrombolyzed AIS patients who fail to reanalyze (>60%), t-PA might trigger unintended and potentially harmful immunosuppressive consequences instead of beneficial reperfusion. To test this hypothesis, we performed an exploratory study to investigate the immunomodulatory properties of t-PA treatment in a mouse model of ischemic stroke. Methods: C57Bl/6J wild-type mice and plasminogen-deficient (plg-/-) mice were subjected to middle cerebral artery occlusion (MCAo) for 60 min followed by mouse t-PA treatment (0.9 mg/kg) at reperfusion. Behavioral testing was performed 23 h after occlusion, pursued by determination of blood counts and plasma cytokines at 24 h. Spleens and cervical lymph nodes (cLN) were also harvested and characterized by flow cytometry. Results: MCAo resulted in profound attenuation of immune activation, as anticipated. t-PA treatment not only worsened neurological deficit, but further reduced lymphocyte and monocyte counts in blood, enhanced plasma levels of both IL-10 and TNFα and decreased various conventional DC subsets in the spleen and cLN, consistent with enhanced immunosuppression and systemic inflammation after stroke. Many of these effects were abolished in plg-/- mice, suggesting plasmin as a key mediator of t-PA-induced immunosuppression. Conclusion: t-PA, via plasmin generation, may weaken the immune response post-stroke, potentially enhancing infection risk and impairing neurological recovery. Due to the large number of comparisons performed in this study, additional pre-clinical work is required to confirm these significant possibilities. Future studies will also need to ascertain the functional implications of t-PA-mediated immunosuppression for thrombolyzed AIS patients, particularly for those with failed recanalization.


Assuntos
Fibrinolisina/imunologia , Acidente Vascular Cerebral/patologia , Terapia Trombolítica/métodos , Ativador de Plasminogênio Tecidual/imunologia , Ativador de Plasminogênio Tecidual/uso terapêutico , Animais , Citocinas/sangue , Modelos Animais de Doenças , Imunomodulação/imunologia , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Artéria Cerebral Média/patologia , Plasminogênio/genética
16.
Fluids Barriers CNS ; 14(1): 33, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29157263

RESUMO

BACKGROUND: Symptomatic intracerebral haemorrhage (sICH) following tissue-type plasminogen activator (rt-PA) administration is the most feared and lethal complication of thrombolytic therapy for ischaemic stroke, creating a significant obstacle for a broader uptake of this beneficial treatment. rt-PA also undermines cerebral vasculature stability in a multimodal process which involves engagement with LDL receptor-related protein 1 (LRP-1), potentially underlying the development of sICH. AIMS AND METHODS: We aimed to simulate rt-PA-induced haemorrhagic transformation (HT) in a mouse model of stroke and to assess if it drives symptomatic neurological deterioration and whether it is attenuated by LDL receptor blockade. rt-PA (10 mg/kg) or its vehicle, with or without the LDL receptor antagonist, receptor-associated protein (RAP; 2 mg/kg), were intravenously injected at reperfusion after 0.5 or 4 h of middle cerebral artery occlusion (MCAo). Albumin and haemoglobin content were measured in the perfused mouse brains 24 h post MCAo as indications of blood-brain barrier (BBB) compromise and HT, respectively. RESULTS: rt-PA did not elevate brain albumin and haemoglobin levels in sham mice or in mice subjected to 0.5 h MCAo. In contrast, administration of rt-PA after prolonged MCAo (4 h) caused a marked increase in HT (but similar changes in brain albumin) compared to vehicle, mimicking the clinical shift from a safe to detrimental intervention. Interestingly, this HT did not correlate with functional deficit severity at 24 h, suggesting that it does not play a symptomatic role in our mouse stroke model. Co-administration of RAP with or without rt-PA reduced mortality and neurological scores but did not effectively decrease brain albumin and haemoglobin levels. CONCLUSION: Despite the proven causative relationship between severe HT and neurological deterioration in human stroke, rt-PA-triggered HT in mouse MCAo does not contribute to neurological deficit or simulate sICH. Model limitations, such as the long duration of occlusion required, the type of HT achieved and the timing of deficit assessment may account for this mismatch. Our results further suggest that blockade of LDL receptors improves stroke outcome irrespective of rt-PA, blood-brain barrier breakdown and HT.


Assuntos
Hemorragia Cerebral/induzido quimicamente , Receptores de LDL/antagonistas & inibidores , Acidente Vascular Cerebral/fisiopatologia , Animais , Modelos Animais de Doenças , Fibrinolíticos/efeitos adversos , Humanos , Infarto da Artéria Cerebral Média/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ativador de Plasminogênio Tecidual/efeitos adversos
17.
PLoS One ; 12(3): e0172889, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278253

RESUMO

BACKGROUND: Immobility and neural damage likely contribute to accelerated bone loss after stroke, and subsequent heightened fracture risk in humans. OBJECTIVE: To investigate the skeletal effect of middle cerebral artery occlusion (MCAo) stroke in rats and examine its utility as a model of human post-stroke bone loss. METHODS: Twenty 15-week old spontaneously hypertensive male rats were randomized to MCAo or sham surgery controls. Primary outcome: group differences in trabecular bone volume fraction (BV/TV) measured by Micro-CT (10.5 micron istropic voxel size) at the ultra-distal femur of stroke affected left legs at day 28. Neurological impairments (stroke behavior and foot-faults) and physical activity (cage monitoring) were assessed at baseline, and days 1 and 27. Serum bone turnover markers (formation: N-terminal propeptide of type 1 procollagen, PINP; resorption: C-terminal telopeptide of type 1 collagen, CTX) were assessed at baseline, and days 7 and 27. RESULTS: No effect of stroke was observed on BV/TV or physical activity, but PINP decreased by -24.5% (IQR -34.1, -10.5, p = 0.046) at day 27. In controls, cortical bone volume (5.2%, IQR 3.2, 6.9) and total volume (6.4%, IQR 1.2, 7.6) were higher in right legs compared to left legs, but these side-to-side differences were not evident in stroke animals. CONCLUSION: MCAo may negatively affect bone formation. Further investigation of limb use and physical activity patterns after MCAo is required to determine the utility of this current model as a representation of human post-stroke bone loss.


Assuntos
Biomarcadores/sangue , Osso Cortical/metabolismo , Fêmur/metabolismo , Acidente Vascular Cerebral/patologia , Animais , Peso Corporal , Densidade Óssea , Remodelação Óssea , Estudos de Casos e Controles , Colágeno Tipo I/sangue , Osso Cortical/diagnóstico por imagem , Modelos Animais de Doenças , Fêmur/diagnóstico por imagem , Atividade Motora , Fragmentos de Peptídeos/sangue , Projetos Piloto , Pró-Colágeno/sangue , Ratos , Ratos Endogâmicos SHR , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/mortalidade , Microtomografia por Raio-X
18.
PLoS One ; 11(7): e0158653, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27427941

RESUMO

Tissue type plasminogen activator (t-PA) has been implicated in the development of multiple sclerosis (MS) and in rodent models of experimental autoimmune encephalomyelitis (EAE). We show that levels of t-PA mRNA and activity are increased ~4 fold in the spinal cords of wild-type mice that are mice subjected to EAE. This was also accompanied with a significant increase in the levels of pro-matrix metalloproteinase 9 (pro-MMP-9) and an influx of fibrinogen. We next compared EAE severity in wild-type mice, t-PA-/- mice and T4+ transgenic mice that selectively over-express (~14-fold) mouse t-PA in neurons of the central nervous system. Our results confirm that t-PA deficient mice have an earlier onset and more severe form of EAE. T4+ mice, despite expressing higher levels of endogenous t-PA, manifested a similar rate of onset and neurological severity of EAE. Levels of proMMP-9, and extravasated fibrinogen in spinal cord extracts were increased in mice following EAE onset regardless of the absence or over-expression of t-PA wild-type. Interestingly, MMP-2 levels also increased in spinal cord extracts of T4+ mice following EAE, but not in the other genotypes. Hence, while the absence of t-PA confers a more deleterious form of EAE, neuronal over-expression of t-PA does not overtly protect against this condition with regards to symptom onset or severity of EAE.


Assuntos
Encefalomielite Autoimune Experimental/genética , Esclerose Múltipla/genética , Ativador de Plasminogênio Tecidual/genética , Animais , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Fibrinogênio/análise , Fibrinogênio/metabolismo , Deleção de Genes , Masculino , Metaloproteinase 9 da Matriz/análise , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Ativador de Plasminogênio Tecidual/análise , Ativador de Plasminogênio Tecidual/metabolismo , Regulação para Cima
19.
Cell Mol Life Sci ; 69(14): 2327-43, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22648375

RESUMO

Reactive oxygen species (ROS) are cellular signals but also disease triggers; their relative excess (oxidative stress) or shortage (reductive stress) compared to reducing equivalents are potentially deleterious. This may explain why antioxidants fail to combat diseases that correlate with oxidative stress. Instead, targeting of disease-relevant enzymatic ROS sources that leaves physiological ROS signaling unaffected may be more beneficial. NADPH oxidases are the only known enzyme family with the sole function to produce ROS. Of the catalytic NADPH oxidase subunits (NOX), NOX4 is the most widely distributed isoform. We provide here a critical review of the currently available experimental tools to assess the role of NOX and especially NOX4, i.e. knock-out mice, siRNAs, antibodies, and pharmacological inhibitors. We then focus on the characterization of the small molecule NADPH oxidase inhibitor, VAS2870, in vitro and in vivo, its specificity, selectivity, and possible mechanism of action. Finally, we discuss the validation of NOX4 as a potential therapeutic target for indications including stroke, heart failure, and fibrosis.


Assuntos
NADPH Oxidases/metabolismo , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Modelos Animais , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , Estresse Oxidativo/efeitos dos fármacos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA