Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; : 2402880, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259045

RESUMO

The recently dominant SARS-CoV-2 Omicron JN.1 has evolved into multiple sublineages, with recurrent spike mutations R346 T, F456L, and T572I, some of which exhibit growth advantages, such as KP.2 and KP.3. We investigated these mutations in JN.1, examining their individual and combined effects on immune evasion, ACE2 receptor affinity, and in vitro infectivity. F456L increased resistance to neutralization by human sera, including those after JN.1 breakthrough infections, and by RBD class-1 monoclonal antibodies, significantly altering JN.1 antigenicity. R346 T enhanced ACE2-binding affinity and modestly boosted the infectivity of JN.1 pseudovirus, without a discernible effect on serum neutralization, while T572I slightly bolstered evasion of SD1-directed mAbs against JN.1's ancestor, BA.2, possibly by altering SD1 conformation. Importantly, expanding sublineages such as KP.2 containing R346 T, F456L, and V1104L, showed similar neutralization resistance as JN.1 with R346 T and F456L, suggesting V1104L does not appreciably affect antibody evasion. Furthermore, the hallmark mutation Q493E in KP.3 significantly reduced ACE2-binding affinity and viral infectivity, without noticeably impacting serum neutralization. Our findings illustrate how certain JN.1 mutations confer growth advantages in the population and could inform the design of the next COVID-19 vaccine booster.

3.
Nature ; 624(7992): 639-644, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871613

RESUMO

A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant, BA.2.86, has emerged and spread to numerous countries worldwide, raising alarm because its spike protein contains 34 additional mutations compared with its BA.2 predecessor1. We examined its antigenicity using human sera and monoclonal antibodies (mAbs). Reassuringly, BA.2.86 was no more resistant to human sera than the currently dominant XBB.1.5 and EG.5.1, indicating that the new subvariant would not have a growth advantage in this regard. Importantly, sera from people who had XBB breakthrough infection exhibited robust neutralizing activity against all viruses tested, suggesting that upcoming XBB.1.5 monovalent vaccines could confer added protection. Although BA.2.86 showed greater resistance to mAbs to subdomain 1 (SD1) and receptor-binding domain (RBD) class 2 and 3 epitopes, it was more sensitive to mAbs to class 1 and 4/1 epitopes in the 'inner face' of the RBD that is exposed only when this domain is in the 'up' position. We also identified six new spike mutations that mediate antibody resistance, including E554K that threatens SD1 mAbs in clinical development. The BA.2.86 spike also had a remarkably high receptor affinity. The ultimate trajectory of this new SARS-CoV-2 variant will soon be revealed by continuing surveillance, but its worldwide spread is worrisome.


Assuntos
Epitopos de Linfócito B , Receptores Virais , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Epitopos de Linfócito B/imunologia , Imunogenicidade da Vacina , Mutação , Receptores Virais/metabolismo , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Soros Imunes/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA