Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1111705, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819101

RESUMO

The generation of midbrain dopaminergic neurons (mDAs) from pluripotent stem cells (hPSC) holds much promise for both disease modelling studies and as a cell therapy for Parkinson's disease (PD). Generally, dopaminergic neuron differentiation paradigms rely on inhibition of smad signalling for neural induction followed by hedgehog signalling and an elevation of ß-catenin to drive dopaminergic differentiation. Post-patterning, differentiating dopaminergic neuron cultures are permitted time for maturation after which the success of these differentiation paradigms is usually defined by expression of tyrosine hydroxylase (TH), the rate limiting enzyme in the synthesis of dopamine. However, during maturation, culture media is often supplemented with additives to promote neuron survival and or promote cell differentiation. These additives include dibutyryl cyclic adenosine monophosphate (dbcAMP), transforming growth factor ß3 (TGFß3) and or the γ-secretase inhibitor (DAPT). While these factors are routinely added to cultures, their impact upon pluripotent stem cell-derived mDA phenotype is largely unclear. In this study, we differentiate pluripotent stem cells toward a dopaminergic phenotype and investigate how the omission of dbcAMP, TGFß3 or DAPT, late in maturation, affects the regulation of multiple dopaminergic neuron phenotype markers. We now show that the removal of dbcAMP or TGFß3 significantly and distinctly impacts multiple markers of the mDA phenotype (FOXA2, EN1, EN2, FOXA2, SOX6), while commonly increasing both MSX2 and NEUROD1 and reducing expression of both tyrosine hydroxylase and WNT5A. Removing DAPT significantly impacted MSX2, OTX2, EN1, and KCNJ6. In the absence of any stressful stimuli, we suggest that these culture additives should be viewed as mDA phenotype-modifying, rather than neuroprotective. We also suggest that their addition to cultures is likely to confound the interpretation of both transplantation and disease modelling studies.

2.
PLoS One ; 16(12): e0261730, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34941945

RESUMO

In this study we investigate how ß-catenin-dependent WNT signalling impacts midbrain dopaminergic neuron (mDA) specification. mDA cultures at day 65 of differentiation responded to 25 days of the tankyrase inhibitor XAV969 (XAV, 100nM) with reduced expression of markers of an A9 mDA phenotype (KCNJ6, ALDH1A1 and TH) but increased expression of the transcriptional repressors NR0B1 and NR0B2. Overexpression of NR0B1 and or NR0B2 promoted a loss of A9 dopaminergic neuron phenotype markers (KCNJ6, ALDH1A1 and TH). Overexpression of NR0B1, but not NR0B2 promoted a reduction in expression of the ß-catenin-dependent WNT signalling pathway activator RSPO2. Analysis of Parkinson's disease (PD) transcriptomic databases shows a profound PD-associated elevation of NR0B1 as well as reduced transcript for RSPO2. We conclude that reduced ß-catenin-dependent WNT signalling impacts dopaminergic neuron identity, in vitro, through increased expression of the transcriptional repressor, NR0B1. We also speculate that dopaminergic neuron regulatory mechanisms may be perturbed in PD and that this may have an impact upon both existing nigral neurons and also neural progenitors transplanted as PD therapy.


Assuntos
Receptor Nuclear Órfão DAX-1/biossíntese , Neurônios Dopaminérgicos/metabolismo , Regulação para Baixo , Células-Tronco Embrionárias Humanas/metabolismo , Doença de Parkinson/metabolismo , Regulação para Cima , Via de Sinalização Wnt , beta Catenina/metabolismo , Biomarcadores/metabolismo , Receptor Nuclear Órfão DAX-1/genética , Humanos , Doença de Parkinson/genética , beta Catenina/genética
3.
Mol Ther Nucleic Acids ; 12: 504-517, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30195787

RESUMO

Delivery of plasmids for gene expression in vivo is an inefficient process that requires improvement and optimization to unlock the clinical potential of DNA vaccines. With ease of manufacture and biocompatibility in mind, we explored condensation of DNA in aqueous solution with a self-crosslinking, endosome-escaping lipopeptide (LP), stearoyl-Cys-His-His-Lys-Lys-Lys-amide (stearoyl-CH2K3), to produce cationic LP/DNA complexes. To test whether poly(ethylene glycol) (PEG)-ylation of these cationic complexes to neutralize the surface charge would improve the distribution, gene expression, and immune responses poly(ethylene glycol), these LP/DNA complexes were combined with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000). Fluorescence imaging illustrated that the cationic complexes exhibited the highest degree of localization and lowest degree of dispersion throughout the injected muscle, suggesting impaired mobility of cationic particles upon administration. Nanoluciferase reporter assays over a 90-day period demonstrated that gene expression levels in muscle were highest for PEGylated particles, with over a 200-fold higher level of expression than the cationic particles observed at 30 days. Humoral and cell-mediated immune responses were evaluated in vivo after injection of an ovalbumin expression plasmid. PEGylation improved both immune responses to the DNA complexes in mice. Overall, this suggests that PEGylation of cationic lipopeptide complexes can significantly improve both the transgene expression and immunogenicity of intramuscular DNA vaccines.

4.
J Pharmacol Exp Ther ; 367(2): 335-347, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30104322

RESUMO

Renal podocyte survival depends upon the dynamic regulation of a complex cell architecture that links the glomerular basement membrane to integrins, ion channels, and receptors. Alport syndrome is a heritable chronic kidney disease where mutations in α3, α4, or α5 collagen genes promote podocyte death. In rodent models of renal failure, activation of the calcium-sensing receptor (CaSR) can protect podocytes from stress-related death. In this study, we assessed CaSR function in podocyte-like cells derived from induced-pluripotent stem cells from two patients with Alport Syndrome (AS1 & AS2) and a renal disease free individual [normal human mesangial cell (NHMC)], as well as a human immortalized podocyte-like (HIP) cell line. Extracellular calcium elicited concentration-dependent elevations of intracellular calcium in all podocyte-like cells. NHMC and HIP, but not AS1 or AS2 podocyte-like cells, also showed acute reductions in intracellular calcium prior to elevation. In NHMC podocyte-like cells this acute reduction was blocked by the large-conductance potassium channel (KCNMA1) inhibitors iberiotoxin (10 nM) and tetraethylammonium (5 mM), as well as the focal adhesion kinase inhibitor PF562271 (N-methyl-N-(3-((2-(2-oxo-2,3-dihydro-1H-indol-5-ylamino)-5-trifluoromethyl-pyrimidin-4-ylamino)-methyl)-pyridin-2-yl)-methanesulfonamide, 10 nM). Quantitative polymerase chain reaction (qPCR) and immunolabeling showed the presence of KCNMA1 transcript and protein in all podocyte-like cells tested. Cultivation of AS1 podocytes on decellularized plates of NHMC podocyte-like cells partially restored acute reductions in intracellular calcium in response to extracellular calcium. We conclude that the AS patient-derived podocyte-like cells used in this study showed dysfunctional integrin signaling and potassium channel function, which may contribute to podocyte death seen in Alport syndrome.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Nefrite Hereditária/metabolismo , Podócitos/metabolismo , Canais de Potássio/metabolismo , Adolescente , Cálcio/metabolismo , Linhagem Celular , Colágeno Tipo IV/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Membrana Basal Glomerular/metabolismo , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Masculino , Pessoa de Meia-Idade , Fenótipo , Receptores de Detecção de Cálcio/metabolismo , Transdução de Sinais/fisiologia
5.
Vaccine ; 35(38): 5115-5122, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28822642

RESUMO

In this study we determined the in vivo activity of model ovalbumin vaccines delivered by direct intramuscular delivery of plasmid DNA or oral delivery using a recombinant suicidal Listeria monocytogenes strain (rsΔ2). In a previous report we described how rsΔ2 is capable of delivering luciferase, as protein or DNA, in vitro, into non-dividing intestinal epithelial cells (Kuo et al., 2009). This is achieved by engineering a dual expression shuttle vector, pDuLX-Luc, that replicates in E. coli and rsΔ2 and drives gene expression from the Listeria promoter (Phly) as well as the eukaryotic cytomegalovirus promoter (CMV), thereby delivering both protein and plasmid DNA to the cell cytoplasm. For the current in vivo study rsΔ2 containing pDuLX-OVA was used to deliver both ovalbumin protein and the mammalian expression plasmid by the oral route. Controls were used to investigate the activity of this system versus positive and negative controls, as well as quantifying activity against direct intramuscular injection of expression plasmids. Oral administration of rsΔ2(pDuLX-OVA) produced significant titres of antibody and was effective at inducing targeted T-cell lysis (approximately 30% lysis relative to an experimental positive control, intravenous OVA-coated splenocytes+lipopolysaccharide). Intramuscular injection of plasmids pDuLX-OVA or p3L-OVA (which lacks the prokaryotic promoter) also produced significant CTL-mediated cell lysis. The delivery of the negative control rsΔ2 (pDuLX-Luc) confirmed that the observed activity was induced specifically by the ovalbumin vaccination. The data suggest that the oral activity of rsΔ2(pDuLX-OVA) is explained by delivery of OVA protein, expressed in rsΔ2 from the prokaryotic promoter present in pDuLX-OVA, but transfection of mammalian cells in vivo may also play a role. Antibody titres were also produced by oral delivery (in rsΔ2) of the p3L-OVA plasmid in which does not include a prokaryotic promoter.


Assuntos
Listeria monocytogenes/genética , Plasmídeos/genética , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Administração Oral , Animais , Feminino , Imunidade Celular/genética , Imunidade Celular/imunologia , Imunidade Humoral/genética , Imunidade Humoral/imunologia , Injeções Intramusculares , Camundongos , Vacinas de DNA/administração & dosagem
6.
Mol Ther Nucleic Acids ; 5(10): e371, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27701400

RESUMO

Analysis of the tissue distribution of plasmid DNA after administration of nonviral gene delivery systems is best accomplished using quantitative real-time polymerase chain reaction (qPCR), although published strategies do not allow determination of the absolute mass of plasmid delivered to different tissues. Generally, data is expressed as the mass of plasmid relative to the mass of genomic DNA (gDNA) in the sample. This strategy is adequate for comparisons of efficiency of delivery to a single site but it does not allow direct comparison of delivery to multiple tissues, as the mass of gDNA extracted per unit mass of each tissue is different. We show here that by constructing qPCR standard curves for each tissue it is possible to determine the dose of intact plasmid remaining in each tissue, which is a more useful parameter when comparing the fates of different formulations of DNA. We exemplify the use of this tissue-specific qPCR method by comparing the delivery of naked DNA, cationic DNA complexes, and neutral PEGylated DNA complexes after intramuscular injection. Generally, larger masses of intact plasmid were present 24 hours after injection of DNA complexes, and neutral complexes resulted in delivery of a larger mass of intact plasmid to the spleen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA