Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37764002

RESUMO

The emergence of carbapenem-resistant Enterobacterales (CRE) has been recognized as a significant concern globally. Ceftazidime/avibactam (CZA) is a novel ß-lactam/ß-lactamase inhibitor that has demonstrated activity against isolates producing class A, C, and D ß-lactamases. Here-in, we evaluated the in vitro activity of CZA and comparator antimicrobial agents against 858 CRE isolates, arising from the Southeast Asian region, collected from a large tertiary hospital in Singapore. These CRE isolates mainly comprised Klebsiella pneumoniae (50.5%), Escherichia coli (29.4%), and Enterobacter cloacae complex (17.1%). Susceptibility rates to levofloxacin, imipenem, meropenem, doripenem, aztreonam, piperacillin/tazobactam, cefepime, tigecycline, and polymyxin B were low. CZA was the most active ß-lactam agent against 68.9% of the studied isolates, while amikacin was the most active agent among all comparator antibiotics (80% susceptibility). More than half of the studied isolates (51.4%) identified were Klebsiella pneumoniae carbapenemase (KPC)-2 producers, 25.9% were New Delhi metallo-ß-lactamase (NDM) producers, and Oxacillinase (OXA)-48-like producers made up 10.7%. CZA was the most active ß-lactam agent against KPC-2, OXA-48-like, and Imipenemase (IMI) producers (99.3% susceptible; MIC50/90: ≤1/2 mg/L). CZA had excellent activity against the non-carbapenemase-producing CRE (91.4% susceptible; MIC50/90: ≤1/8 mg/L). Expectedly, CZA had no activity against the metallo-ß-lactamases (MBL)-producing CRE (NDM- and Imipenemase MBL (IMP) producers; 27.2% isolates), and the carbapenemase co-producing CRE (NDM + KPC, NDM + OXA-48-like, NDM + IMP; 3.0% isolates). CZA is a promising addition to our limited armamentarium against CRE infections, given the reasonably high susceptibility rates against these CRE isolates. Careful stewardship and rational dosing regimens are required to preserve CZA's utility against CRE infections.

2.
Sci Total Environ ; 672: 625-633, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30974354

RESUMO

Sulfate reducing bacteria (SRB) can contribute to facilitating serious concrete corrosion through the production of hydrogen sulfide in sewers. Recently, free nitrous acid (FNA) was discovered as a promising antimicrobial agent to inhibit SRB activities thereby limiting hydrogen sulfide production in sewers. However, knowledge of the bacterial response to increasing levels of the antimicrobial agent is unknown. Here we report the proteomic response of Desulfovibrio vulgaris Hildenborough and reveal that the antimicrobial effect of FNA is multi-targeted and dependent on the FNA levels. This was achieved using a sequential window acquisition of all theoretical mass spectrometry analysis to determine protein abundance variations in D. vulgaris during exposure to different FNA concentrations. When exposed to 1.0 µg N/L FNA, nitrite reduction (nitrite reductase) related proteins and nitrosative stress related proteins, including the hybrid cluster protein, showed distinct increased abundances. When exposed to 4.0 and 8.0 µg N/L FNA, increased abundance was detected for proteins putatively involved in nitrite reduction. Abundance of proteins involved in the sulfate reduction pathway (from adenylylphophosulfate to sulfite) and lactate oxidation pathway (from pyruvate to acetate) were initially inhibited in response to FNA at 8 h incubation, and then recovered at 12 h incubation. Lowered ribosomal protein abundance in D. vulgaris was detected, however, total cellular protein levels were mostly constant in the presence or absence of FNA. In addition, this study indicates that proteins coded by genes DVU2543, DVU0772, and DVU3212 potentially participate in resisting oxidative stress with FNA exposure. These findings share new insights for understanding the dynamic responses of D. vulgaris to FNA and could be useful to guide and improve the practical applications of FNA-based technologies for control of sewer corrosion.


Assuntos
Anti-Infecciosos/toxicidade , Desulfovibrio vulgaris/fisiologia , Ácido Nitroso/toxicidade , Proteoma/metabolismo , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Nitrito Redutases/metabolismo , Nitritos/metabolismo , Oxirredução , Proteômica , Sulfatos , Sulfetos
3.
Appl Environ Microbiol ; 82(18): 5563-75, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27371588

RESUMO

Hydrogen sulfide produced by sulfate-reducing bacteria (SRB) in sewers causes odor problems and asset deterioration due to the sulfide-induced concrete corrosion. Free nitrous acid (FNA) was recently demonstrated as a promising antimicrobial agent to alleviate hydrogen sulfide production in sewers. However, details of the antimicrobial mechanisms of FNA are largely unknown. Here, we report the multiple-targeted antimicrobial effects of FNA on the SRB Desulfovibrio vulgaris Hildenborough by determining the growth, physiological, and gene expression responses to FNA exposure. The activities of growth, respiration, and ATP generation were inhibited when exposed to FNA. These changes were reflected in the transcript levels detected during exposure. The removal of FNA was evident by nitrite reduction that likely involved nitrite reductase and the poorly characterized hybrid cluster protein, and the genes coding for these proteins were highly expressed. During FNA exposure, lowered ribosome activity and protein production were detected. Additionally, conditions within the cells were more oxidizing, and there was evidence of oxidative stress. Based on an interpretation of the measured responses, we present a model depicting the antimicrobial effects of FNA on D. vulgaris These findings provide new insight for understanding the responses of D. vulgaris to FNA and will provide a foundation for optimal application of this antimicrobial agent for improved control of sewer corrosion and odor management.IMPORTANCE Hydrogen sulfide produced by SRB in sewers causes odor problems and results in serious deterioration of sewer assets that requires very costly and demanding rehabilitation. Currently, there is successful application of the antimicrobial agent free nitrous acid (FNA), the protonated form of nitrite, for the control of sulfide levels in sewers (G. Jiang et al., Water Res 47:4331-4339, 2013, http://dx.doi.org/10.1016/j.watres.2013.05.024). However, the details of the antimicrobial mechanisms of FNA are largely unknown. In this study, we identified the key responses (decreased anaerobic respiration, reducing FNA, combating oxidative stress, and shutting down protein synthesis) of Desulfovibrio vulgaris Hildenborough, a model sewer corrosion bacterium, to FNA exposure by examining the growth, physiological, and gene expression changes. These findings provide new insight and underpinning knowledge for understanding the responses of D. vulgaris to FNA exposure, thereby benefiting the practical application of FNA for improved control of sewer corrosion and odor.


Assuntos
Anti-Infecciosos/farmacologia , Desulfovibrio vulgaris/efeitos dos fármacos , Ácido Nitroso/farmacologia , Trifosfato de Adenosina/metabolismo , Desulfovibrio vulgaris/genética , Desulfovibrio vulgaris/crescimento & desenvolvimento , Desulfovibrio vulgaris/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Perfilação da Expressão Gênica , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA