RESUMO
While the neuronal underpinnings of autism spectrum disorder (ASD) are being unraveled, vascular contributions to ASD remain elusive. Here, we investigated postnatal cerebrovascular development in the 16p11.2df/+ mouse model of 16p11.2 deletion ASD syndrome. We discover that 16p11.2 hemizygosity leads to male-specific, endothelium-dependent structural and functional neurovascular abnormalities. In 16p11.2df/+ mice, endothelial dysfunction results in impaired cerebral angiogenesis at postnatal day 14, and in altered neurovascular coupling and cerebrovascular reactivity at postnatal day 50. Moreover, we show that there is defective angiogenesis in primary 16p11.2df/+ mouse brain endothelial cells and in induced-pluripotent-stem-cell-derived endothelial cells from human carriers of the 16p11.2 deletion. Finally, we find that mice with an endothelium-specific 16p11.2 deletion (16p11.2ΔEC) partially recapitulate some of the behavioral changes seen in 16p11.2 syndrome, specifically hyperactivity and impaired motor learning. By showing that developmental 16p11.2 haploinsufficiency from endothelial cells results in neurovascular and behavioral changes in adults, our results point to a potential role for endothelial impairment in ASD.
Assuntos
Transtorno do Espectro Autista/fisiopatologia , Células Endoteliais/patologia , Acoplamento Neurovascular/fisiologia , Animais , Transtorno Autístico , Circulação Cerebrovascular/fisiologia , Deleção Cromossômica , Transtornos Cromossômicos , Cromossomos Humanos Par 16 , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Deficiência Intelectual , Masculino , Camundongos , Neovascularização Fisiológica/genéticaRESUMO
Human pluripotent stem cells (hPSCs) are an essential cell source in tissue engineering, studies of development, and disease modeling. Efficient, broadly amenable protocols for rapid lineage induction of hPSCs are of great interest in the stem cell biology field. We describe a simple, robust method for differentiation of hPSCs into mesendoderm in defined conditions utilizing single-cell seeding (SCS) and BMP4 and Activin A (BA) treatment. BA treatment was readily incorporated into existing protocols for chondrogenic and endothelial progenitor cell differentiation, while fine-tuning of BA conditions facilitated definitive endoderm commitment. After prolonged differentiation in vitro or in vivo, BA pretreatment resulted in higher mesoderm and endoderm levels at the expense of ectoderm formation. These data demonstrate that SCS with BA treatment is a powerful method for induction of mesendoderm that can be adapted for use in mesoderm and endoderm differentiation.
Assuntos
Diferenciação Celular/genética , Mesoderma/citologia , Mesoderma/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Transcrição Gênica , Ativinas/farmacologia , Proteína Morfogenética Óssea 4/farmacologia , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Endoderma/citologia , Endoderma/metabolismo , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes/efeitos dos fármacos , Análise de Célula Única , Teratoma/etiologia , Fatores de Tempo , TranscriptomaRESUMO
It is increasingly recognized that immunomodulation represents an important mechanism underlying the benefits of many stem cell therapies, rather than the classical paradigm of transdifferentiation and cell replacement. In the former paradigm, the beneficial effects of cell therapy result from paracrine mechanism(s) and/or cell-cell interaction as opposed to direct engraftment and repair of diseased tissue and/or dysfunctional organs. Depending on the cell type used, components of the secretome, including microRNA (miRNA) and extracellular vesicles, may be able to either activate or suppress the immune system even without direct immune cell contact. Mesenchymal stromal cells (MSCs), also referred to as mesenchymal stem cells, are found not only in the bone marrow, but also in a wide variety of organs and tissues. In addition to any direct stem cell activities, MSCs were the first stem cells recognized to modulate immune response, and therefore they will be the focus of this review. Specifically, MSCs appear to be able to effectively attenuate acute and protracted inflammation via interactions with components of both innate and adaptive immune systems. To date, this capacity has been exploited in a large number of preclinical studies and MSC immunomodulatory therapy has been attempted with various degrees of success in a relatively large number of clinical trials. Here, we will explore the various mechanism employed by MSCs to effect immunosuppression as well as review the current status of its use to treat excessive inflammation in the context of acute lung injury (ALI) and sepsis in both preclinical and clinical settings.
Assuntos
Lesão Pulmonar Aguda/terapia , Terapia Baseada em Transplante de Células e Tecidos , Transplante de Células-Tronco Mesenquimais , Sepse/terapia , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Comunicação Celular/imunologia , Transdiferenciação Celular/imunologia , Humanos , Imunomodulação , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Sepse/imunologia , Sepse/patologiaRESUMO
Human induced pluripotent stem cells (hiPSC) have the potential to generate healthy cells and tissues for the study and medical treatment of a large number of diseases. The utility of putative hiPSC-based therapies is constrained by a lack of robust quality-control assays that address the stability of the cells or their capacity to form teratomas after differentiation. Here we report that virally derived hiPSC, but not human embryonic stem cells (hESC) or hiPSC derived using episomal nonintegrating vectors, exhibit a propensity to revert to a pluripotent phenotype following differentiation. This instability was revealed using our published method to identify pluripotent cells undergoing very early-stage differentiation in standard hESC cultures, by fluorescence activated cell sorting (FACS) based on expression of the cell surface markers TG30 (CD9) and GCTM-2. Differentiated cells cultured post-FACS fractionation from virally derived hiPSC lines reacquired immunoreactivity to TG30 (CD9) and GCTM-2, formed stem cell-like colonies, and re-expressed canonical pluripotency markers. Furthermore, differentiated cells from pluripotency-reverting hiPSC lines generated teratomas in immunocompromised mice, raising concerns about their safety in downstream applications. In contrast, differentiated cell populations from hESC and episomally derived hiPSC did not show any of these abnormalities. Our assays may be used to identify "unsafe" hiPSC cell lines and this information should be considered when selecting hiPSC lines for clinical use and indicate that experiments using these "unsafe" hiPSC lines should be interpreted carefully.
Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Citometria de Fluxo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Camundongos , Camundongos Knockout , Fator 3 de Transcrição de Octâmero/metabolismo , Teratoma/patologia , TranscriptomaRESUMO
The pluripotency of human embryonic stem cells (hESC) could have great potential for the development of cell replacement therapies. Previous studies have converged on the finding that OCT4, SOX2, and NANOG serve as key regulators in the maintenance of hESC. However, other signals that regulate hESC maintenance remain poorly studied. Here we describe a novel role of an RNA polymerase III (Pol III) subunit, POLR3G, in the maintenance of pluripotency in hESC. We demonstrate the presence of POLR3G in undifferentiated hESC, human induced pluripotent stem cells (hiPSC), and early mouse blastocysts. Downregulation of POLR3G is observed on differentiation of hESC and hiPSC, suggesting that POLR3G can be used as a molecular marker to readily identify undifferentiated pluripotent stem cells from their differentiated derivatives. Using an inducible shRNA lentiviral system, we found evidence that decreased levels of POLR3G result in loss of pluripotency and promote differentiation of hESC to all three germ layers but have no effect on cell apoptosis. On the other hand, overexpression of POLR3G has no effect on pluripotency and apoptosis in undifferentiated hESC. Interestingly, hESC expressing elevated levels of POLR3G are more resistant to differentiation. Furthermore, our experimental results show that POLR3G is a downstream target of OCT4 and NANOG, and our pharmacological study indicated that POLR3G expression can be readily regulated by the Erk1/2 signaling pathway. This study is the first to show an important role of POLR3G in the maintenance of hESC, suggesting a potential role of Pol III transcription in regulating hESC pluripotency.
Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , RNA Polimerase III/metabolismo , Animais , Apoptose , Diferenciação Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Células HEK293 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Oócitos/citologia , Oócitos/metabolismo , RNA Polimerase III/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , TransfecçãoRESUMO
Human pluripotent stem cells, human embryonic stem cells and induced pluripotent stem cells, represent an exciting new era in regenerative medicine and drug discovery. However, prior to their clinical translation, there is a need to gain an in-depth understanding of human pluripotent stem cell biology by characterizing these potentially heterogeneous populations of cells. Flow cytometry provides a rapid and efficient approach with which to isolate, purify, and study the functional properties of defined pluripotent stem cell types.
Assuntos
Citometria de Fluxo/métodos , Células-Tronco Pluripotentes/citologia , Forma Celular , Ensaio de Unidades Formadoras de Colônias , Células-Tronco Embrionárias/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes/metabolismoRESUMO
Surface marker expression forms the basis for characterization and isolation of human embryonic stem cells (hESCs). Currently, there are few well-defined protein epitopes that definitively mark hESCs. Here we combine immunotranscriptional profiling of hESC lines with membrane-polysome translation state array analysis (TSAA) to determine the full set of genes encoding potential hESC surface marker proteins. Three independently isolated hESC lines (HES2, H9, and MEL1) grown under feeder and feeder-free conditions were sorted into subpopulations by fluorescence-activated cell sorting based on coimmunoreactivity to the hESC surface markers GCTM-2 and CD9. Colony-forming assays confirmed that cells displaying high coimmunoreactivity to GCTM-2 and CD9 constitute an enriched subpopulation displaying multiple stem cell properties. Following microarray profiling, 820 genes were identified that were common to the GCTM-2(high)/CD9(high) stem cell-like subpopulation. Membrane-polysome TSAA analysis of hESCs identified 1,492 mRNAs encoding actively translated plasma membrane and secreted proteins. Combining these data sets, 88 genes encode proteins that mark the pluripotent subpopulation, of which only four had been previously reported. Cell surface immunoreactivity was confirmed for two of these markers: TACSTD1/EPCAM and CDH3/P-Cadherin, with antibodies for EPCAM able to enrich for pluripotent hESCs. This comprehensive listing of both hESCs and spontaneous differentiation-associated transcripts and survey of translated membrane-bound and secreted proteins provides a valuable resource for future study into the role of the extracellular environment in both the maintenance of pluripotency and directed differentiation.