Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 350(2): 412-24, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24917546

RESUMO

Proprotein convertase subtilisin kexin-9 (PCSK9) is an important pharmacological target for decreasing low-density lipoprotein (LDL) in cardiovascular disease, although seemingly inaccessible to small molecule approaches. Compared with therapeutic IgG antibodies currently in development, targeting circulating PCSK9 with smaller molecular scaffolds could offer different profiles and reduced dose burdens. This inspired genesis of PCSK9-binding Adnectins, a protein family derived from human fibronectin-10th-type III-domain and engineered for high-affinity target binding. BMS-962476, an ∼11-kDa polypeptide conjugated to polyethylene glycol to enhance pharmacokinetics, binds with subnanomolar affinity to human. The X-ray cocrystal structure of PCSK9 with a progenitor Adnectin shows ∼910 Å(2) of PCSK9 surface covered next to the LDL receptor binding site, largely by residues of a single loop of the Adnectin. In hypercholesterolemic, overexpressing human PCSK9 transgenic mice, BMS-962476 rapidly lowered cholesterol and free PCSK9 levels. In genomic transgenic mice, BMS-962476 potently reduced free human PCSK9 (ED50 ∼0.01 mg/kg) followed by ∼2-fold increases in total PCSK9 before return to baseline. Treatment of cynomolgus monkeys with BMS-962476 rapidly suppressed free PCSK9 >99% and LDL-cholesterol ∼55% with subsequent 6-fold increase in total PCSK9, suggesting reduced clearance of circulating complex. Liver sterol response genes were consequently downregulated, following which LDL and total PCSK9 returned to baseline. These studies highlight the rapid dynamics of PCSK9 control over LDL and liver cholesterol metabolism and characterize BMS-962476 as a potent and efficacious PCSK9 inhibitor.


Assuntos
Anticolesterolemiantes/farmacologia , Lipoproteínas LDL/sangue , Polietilenoglicóis/farmacologia , Pró-Proteína Convertases/antagonistas & inibidores , Proteínas/farmacologia , Sequência de Aminoácidos , Animais , HDL-Colesterol/sangue , Cristalização , Feminino , Humanos , Macaca fascicularis , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/química , Pró-Proteína Convertases/metabolismo , Ratos , Receptores de LDL/antagonistas & inibidores , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Especificidade da Espécie
2.
J Lipid Res ; 54(9): 2400-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23614904

RESUMO

Proprotein convertase subtilisin-kexin-9 (PCSK9) inhibition markedly augments the LDL lowering action of statins. The combination is being evaluated for long-term effects on atherosclerotic disease outcomes. However, effects of combined treatment on hepatic cholesterol and bile acid metabolism have not yet been reported. To study this, PCSK9-Y119X mutant (knockout) and wild-type mice were treated with or without atorvastatin for 12 weeks. Atorvastatin progressively lowered plasma LDL in each group, but no differences in liver cholesterol, cholesterol ester, or total bile acid concentrations, or in plasma total bile acid levels were seen. In contrast, atorvastatin increased fecal total bile acids (≈ 2-fold, P < 0.01) and cholesterol concentrations (≈ 3-fold, P < 0.01) versus controls for both PCSK9-Y119X and wild-type mice. All 14 individual bile acids resolved by LC-MS, including primary, secondary, and conjugated species, reflected similar increases. Expression of key liver bile acid synthesis genes CYP7A1 and CYP8B1 were ≈ 2.5-fold higher with atorvastatin in both strains, but mRNA for liver bile acid export and reuptake transporters and conjugating enzymes were not unaffected. The data suggest that hepatocyte cholesterol and bile acid homeostasis is maintained with combined PCSK9 and HMG-CoA reductase inhibition through efficient liver enzymatic conversion of LDL-derived cholesterol into bile acids and excretion of both, with undisturbed enterohepatic recycling.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Pró-Proteína Convertases/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Colesterol/sangue , Interações Medicamentosas , Fezes/química , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Pró-Proteína Convertase 9 , Serina Endopeptidases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA