Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Med Chem ; 15(4): 1392-1403, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665844

RESUMO

Overactivation of the rat sarcoma virus (RAS) signaling is responsible for 30% of all human malignancies. Son of sevenless 1 (SOS1), a crucial node in the RAS signaling pathway, could modulate RAS activation, offering a promising therapeutic strategy for RAS-driven cancers. Applying machine learning (ML)-based virtual screening (VS) on small-molecule databases, we selected a random forest (RF) regressor for its robustness and performance. Screening was performed with the L-series and EGFR-related datasets, and was extended to the Chinese National Compound Library (CNCL) with more than 1.4 million compounds. In addition to a series of documented SOS1-related molecules, we uncovered nine compounds that have an unexplored chemical framework and displayed inhibitory activity, with the most potent achieving more than 50% inhibition rate in the KRAS G12C/SOS1 PPI assay and an IC50 value in the proximity of 20 µg mL-1. Compared with the manner that known inhibitory agents bind to the target, hit compounds represented by CL01545365 occupy a unique pocket in molecular docking. An in silico drug-likeness assessment suggested that the compound has moderately favorable drug-like properties and pharmacokinetic characteristics. Altogether, our findings strongly support that, characterized by the distinctive binding modes, the recognition of novel skeletons from the carboxylic acid series could be candidates for developing promising SOS1 inhibitors.

2.
Prog Biophys Mol Biol ; 189: 13-25, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593905

RESUMO

Dysregulation of long non-coding RNA (lncRNA) HOXA-AS3 has been shown to contribute to the development of multiple cancer types. Several studies have presented the tumour-modulatory role or prognostic significance of this lncRNA in various kinds of cancer. Overall, HOXA-AS3 can act as a competing endogenous RNA (ceRNA) that inhibits the activity of seven microRNAs (miRNAs), including miR-29a-3p, miR-29 b-3p, miR-29c, miR-218-5p, miR-455-5p, miR-1286, and miR-4319. This relieves the downstream messenger RNA (mRNA) targets of these miRNAs from miRNA-mediated translational repression, allowing them to exert their effect in regulating cellular activities. Examples of the pathways regulated by lncRNA HOXA-AS3 and its associated downstream targets include the WNT/ß-catenin and epithelial-to-mesenchymal transition (EMT) activities. Besides, HOXA-AS3 can interact with other cellular proteins like homeobox HOXA3 and HOXA6, influencing the oncogenic signaling pathways associated with these proteins. Generally, HOXA-AS3 is overexpressed in most of the discussed human cancers, making this lncRNA a potential candidate to diagnose cancer or predict the clinical outcomes of cancer patients. Hence, targeting HOXA-AS3 could be a new therapeutic approach to slowing cancer progression or as a potential biomarker and therapeutic target. A drawback of using lncRNA HOXA-AS3 as a biomarker or therapeutic target is that most of the studies that have reported the tumour-regulatory roles of lncRNA HOXA-AS3 are single observational, in vitro, or in vivo studies. More in-depth mechanistic and large-scale clinical trials must be conducted to confirm the tumour-modulatory roles of lncRNA HOXA-AS3 further. Besides, no lncRNA HOXA-AS3 inhibitor has been tested preclinically and clinically, and designing such an inhibitor is crucial as it may potentially slow cancer progression.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/genética , Neoplasias/patologia , Animais , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
3.
Life Sci ; 347: 122609, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38580197

RESUMO

LIM domains kinase 2 (LIMK2) is a 72 kDa protein that regulates actin and cytoskeleton reorganization. Once phosphorylated by its upstream activator (ROCK1), LIMK2 can phosphorylate cofilin to inactivate it. This relieves the levering stress on actin and allows polymerization to occur. Actin rearrangement is essential in regulating cell cycle progression, apoptosis, and migration. Dysregulation of the ROCK1/LIMK2/cofilin pathway has been reported to link to the development of various solid cancers such as breast, lung, and prostate cancer and liquid cancer like leukemia. This review aims to assess the findings from multiple reported in vitro, in vivo, and clinical studies on the potential tumour-regulatory role of LIMK2 in different human cancers. The findings of the selected literature unraveled that activated AKT, EGF, and TGF-ß pathways can upregulate the activities of the ROCK1/LIMK2/cofilin pathway. Besides cofilin, LIMK2 can modulate the cellular levels of other proteins, such as TPPP1, to promote microtubule polymerization. The tumour suppressor protein p53 can transactivate LIMK2b, a splice variant of LIMK2, to induce cell cycle arrest and allow DNA repair to occur before the cell enters the next phase of the cell cycle. Additionally, several non-coding RNAs, such as miR-135a and miR-939-5p, could also epigenetically regulate the expression of LIMK2. Since the expression of LIMK2 is dysregulated in several human cancers, measuring the tissue expression of LIMK2 could potentially help diagnose cancer and predict patient prognosis. As LIMK2 could play tumour-promoting and tumour-inhibiting roles in cancer development, more investigation should be conducted to carefully evaluate whether introducing a LIMK2 inhibitor in cancer patients could slow cancer progression without posing clinical harms.


Assuntos
Quinases Lim , Neoplasias , Humanos , Quinases Lim/metabolismo , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/genética , Animais , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Quinases Associadas a rho/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
4.
Front Psychol ; 14: 1152002, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397314

RESUMO

Introduction: Despite the availability of validated psychometrics tools to assess depression, there has not been any validated and reliable tool established to test perceived stress among Sri Lankans. The objective of this study is to test the validity and reliability of the Sinhalese Version of the Sheldon Cohen Perceived Stress Scale. Materials and methods: Standard and systematic procedures were adopted to translate the original English version of the Perceived Stress Scale-10 questionnaire into Sinhalese. Consecutive sampling was employed to recruit the Type 2 Diabetes mellitus (T2DM) sample (n = 321), and a convenient sampling was used to recruit the Age and Sex matched Healthy Controls (ASMHC) (n = 101) and the Healthy Community Controls (HCC) groups (n = 75). Cronbach alpha was used to assess internal consistency and reliability was determined using test-retest method utilizing Spearman's correlation coefficient. Sensitivity was evaluated by comparing the mean scores of the Sinhalese Perceived Stress Scale (S-PSS-10) and Sinhalese Patient Health Questionnaire (S-PHQ-9) scores. Post-hoc comparisons were done using Bonferroni's method. Mean scores were compared between the T2DM, ASMHC, and HCC groups using the independent t-test. Explanatory Factor Analysis (EFA) was conducted using the principal component and Varimax rotation while the Confirmatory Factor Analysis (CFA) was performed to assess the goodness-of-fit of the factor structure extracted from the EFA. Concurrent validity was assessed using the Pearson correlation between the S-PSS-10 and Patient Health Questionnaire measured by S-PHQ-9 (p < 0.05). Results: Cronbach alpha values of the three groups T2DM, ASMHC and HCC were 0.85, 0.81, and 0.79, respectively. Results of the ANOVA test suggested that there was a significant difference in the mean scores between groups (p < 0.00). EFA analysis revealed the existence of two factors with eigenvalues greater than 1.0. The factor loadings for the items ranged from 0.71-0.83. The CFA analysis demonstrated a good model fit for the two-factor model S-PSS-10. The S-PSS-10 significantly correlated with S-PHQ-9, indicating an acceptable concurrent validity. Conclusion: Findings revealed that the S-PSS-10 questionnaire can be used to screen perceived stress among the majority of the Sri Lankan Sinhalese-speaking population specially with chronic illnesses. Further studies with higher sample sizes across different populations would enhance the validity and reliability of S-PSS-10.

5.
Toxicology ; 495: 153596, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37480978

RESUMO

Aryl hydrocarbon receptor (AHR) is a ligand-dependent receptor that belongs to the superfamily of basic helix-loop-helix (bHLH) transcription factors. The activation of the canonical AHR signaling pathway is known to induce the expression of cytochrome P450 enzymes, facilitating the detoxification metabolism in the human body. Additionally, AHR could interact with various signaling pathways such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor-1α (HIF-1α), nuclear factor ekappa B (NF-κß), estrogen receptor (ER), and androgen receptor (AR) signaling pathways. Over the past 30 years, several studies have reported that various chemical, physical, or biological agents, such as tobacco, hydrocarbon compounds, industrial and agricultural chemical wastes, drugs, UV, viruses, and other toxins, could affect AHR expression or activity, promoting cancer development. Thus, it is valuable to overview how these factors regulate AHR-mediated carcinogenesis. Current findings have reported that many compounds could act as AHR ligands to drive the expressions of AHR-target genes, such as CYP1A1, CYP1B1, MMPs, and AXL, and other targets that exert a pro-proliferation or anti-apoptotic effect, like XIAP. Furthermore, some other physical and chemical agents, such as UV and 3-methylcholanthrene, could promote AHR signaling activities, increasing the signaling activities of a few oncogenic pathways, such as the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. Understanding how various factors regulate AHR-mediated carcinogenesis processes helps clinicians and scientists plan personalized therapeutic strategies to improve anti-cancer treatment efficacy. As many studies that have reported the roles of AHR in regulating carcinogenesis are preclinical or observational clinical studies that did not explore the detailed mechanisms of how different chemical, physical, or biological agents promote AHR-mediated carcinogenesis processes, future studies should focus on conducting large-scale and functional studies to unravel the underlying mechanism of how AHR interacts with different factors in regulating carcinogenesis processes.


Assuntos
Fosfatidilinositol 3-Quinases , Receptores de Hidrocarboneto Arílico , Humanos , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular , Citocromo P-450 CYP1A1/genética , Fatores Biológicos , Carcinogênese
6.
Molecules ; 28(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37446670

RESUMO

A series of novel macroacyclic Schiff base ligands and their Cu (II) complexes were synthesised via reacting dicarbonyls of varying chain lengths with S-methyl dithiocarbazate (SMDTC) and S-benzyl dithiocarbazate (SBDTC) followed by coordination with Cu (II) ions. X-ray crystal structures were obtained for compound 4, an SBDTC-diacetyl analogue, and Cu7, an SMDTC-hexanedione Cu (II) complex. Anticancer evaluation of the compounds showed that Cu1, an SMDTC-glyoxal complex, demonstrated the highest cytotoxic activity against MCF-7 and MDA-MB-231 breast cancer cells with IC50 values of 1.7 µM and 1.4 µM, respectively. There was no clear pattern observed between the effect of chain length and cytotoxic activity; however, SMDTC-derived analogues were more active than SBDTC-derived analogues against MDA-MB-231 cells. The antibacterial assay showed that K. rhizophila was the most susceptible bacteria to the compounds, followed by S. aureus. Compound 4 and the SMDTC-derived analogues 3, 5, Cu7 and Cu9 possessed the highest antibacterial activity. These active analogues were further assessed, whereby 3 possessed the highest antibacterial activity with an MIC of <24.4 µg/mL against K. rhizophila and S. aureus. Further antibacterial studies showed that at least compounds 4 and 5 were bactericidal. Thus, Cu1 and 3 were the most promising anticancer and antibacterial agents, respectively.


Assuntos
Antineoplásicos , Complexos de Coordenação , Bases de Schiff/química , Staphylococcus aureus , Antibacterianos/química , Bactérias , Complexos de Coordenação/química , Cobre/química , Ligantes , Antineoplásicos/química
7.
Biochem Pharmacol ; 210: 115466, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36849065

RESUMO

Eyes absent homolog 4 (EYA4) is a protein that regulates many vital cellular processes and organogenesis pathways. It possesses phosphatase, hydrolase, and transcriptional activation functions. Mutations in the Eya4 gene can cause sensorineural hearing loss and heart disease. In most non-nervous system cancers such as those of the gastrointestinal tract (GIT), hematological and respiratory systems, EYA4 acts as a putative tumor suppressor. However, in nervous system tumors such as glioma, astrocytoma, and malignant peripheral nerve sheath tumor (MPNST), it plays a putative tumor-promoting role. EYA4 interacts with various signaling proteins of the PI3K/AKT, JNK/cJUN, Wnt/GSK-3ß, and cell cycle pathways to exert its tumor-promoting or tumor-suppressing effect. The tissue expression level and methylation profiles of Eya4 can help predict the prognosis and anti-cancer treatment response among cancer patients. Targeting and altering Eya4 expression and activity could be a potential therapeutic strategy to suppress carcinogenesis. In conclusion, EYA4 may have both putative tumor-promoting and tumor-suppressing roles in different human cancers and has the potential to serve as a prognostic biomarker and therapeutic agent in various cancer types.


Assuntos
Neoplasias , Transativadores , Humanos , Transativadores/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Fosfatidilinositol 3-Quinases/genética , Neoplasias/genética , Genes Supressores de Tumor
8.
J Chin Med Assoc ; 86(4): 356-365, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36762931

RESUMO

Mesenchymal stem cells (MSCs) are multipotent cells derived from adult human tissues that have the ability to proliferate in vitro and maintain their multipotency, making them attractive cell sources for regenerative medicine. However, MSCs reportedly show limited proliferative capacity with inconsistent therapeutic outcomes due to their heterogeneous nature. On the other hand, induced pluripotent stem cells (iPSC) have emerged as an alternative source for the production of various specialized cell types via their ability to differentiate from all three primary germ layers, leading to applications in regenerative medicine, disease modeling, and drug therapy. Notably, iPSCs can differentiate into MSCs in monolayer, commonly referred to as induced mesenchymal stem cells (iMSCs). These cells show superior therapeutic qualities compared with adult MSCs as the applications of the latter are restricted by passage number and autoimmune rejection when applied in tissue regeneration trials. Furthermore, increasing evidence shows that the therapeutic properties of stem cells are a consequence of the paracrine effects mediated by their secretome such as from exosomes, a type of extracellular vesicle secreted by most cell types. Several studies that investigated the potential of exosomes in regenerative medicine and therapy have revealed promising results. Therefore, this review focuses on the recent findings of exosomes secreted from iMSCs as a potential noncell-based therapy.


Assuntos
Exossomos , Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Adulto , Humanos , Diferenciação Celular , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo
9.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674525

RESUMO

Cancer recurrence and drug resistance following treatment, as well as metastatic forms of cancer, are trends that are commonly encountered in cancer management. Amidst the growing popularity of personalized medicine and targeted therapy as effective cancer treatment, studies involving the use of stem cells in cancer therapy are gaining ground as promising translational treatment options that are actively pursued by researchers due to their unique tumor-homing activities and anti-cancer properties. Therefore, this review will highlight cancer interactions with commonly studied stem cell types, namely, mesenchymal stroma/stem cells (MSC), induced pluripotent stem cells (iPSC), iPSC-derived MSC (iMSC), and cancer stem cells (CSC). A particular focus will be on the effects of paracrine signaling activities and exosomal miRNA interaction released by MSC and iMSCs within the tumor microenvironment (TME) along with their therapeutic potential as anti-cancer delivery agents. Similarly, the role of exosomal miRNA released by CSCs will be further discussed in the context of its role in cancer recurrence and metastatic spread, which leads to a better understanding of how such exosomal miRNA could be used as potential forms of non-cell-based cancer therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo , Células-Tronco Neoplásicas , Microambiente Tumoral
10.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499713

RESUMO

Detecting breast cancer (BC) at the initial stages of progression has always been regarded as a lifesaving intervention. With modern technology, extensive studies have unraveled the complexity of BC, but the current standard practice of early breast cancer screening and clinical management of cancer progression is still heavily dependent on tissue biopsies, which are invasive and limited in capturing definitive cancer signatures for more comprehensive applications to improve outcomes in BC care and treatments. In recent years, reviews and studies have shown that liquid biopsies in the form of blood, containing free circulating and exosomal microRNAs (miRNAs), have become increasingly evident as a potential minimally invasive alternative to tissue biopsy or as a complement to biomarkers in assessing and classifying BC. As such, in this review, the potential of miRNAs as the key BC signatures in liquid biopsy are addressed, including the role of artificial intelligence (AI) and machine learning platforms (ML), in capitalizing on the big data of miRNA for a more comprehensive assessment of the cancer, leading to practical clinical utility in BC management.


Assuntos
Neoplasias da Mama , MicroRNA Circulante , MicroRNAs , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Biomarcadores Tumorais/genética , Inteligência Artificial , MicroRNAs/genética , Aprendizado de Máquina
11.
Front Endocrinol (Lausanne) ; 13: 1028846, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479211

RESUMO

The paradoxical action of insulin on hepatic glucose metabolism and lipid metabolism in the insulin-resistant state has been of much research interest in recent years. Generally, insulin resistance would promote hepatic gluconeogenesis and demote hepatic de novo lipogenesis. The underlying major drivers of these mechanisms were insulin-dependent, via FOXO-1-mediated gluconeogenesis and SREBP1c-mediated lipogenesis. However, insulin-resistant mouse models have shown high glucose levels as well as excess lipid accumulation. As suggested, the inert insulin resistance causes the activation of the FOXO-1 pathway promoting gluconeogenesis. However, it does not affect the SREBP1c pathway; therefore, cells continue de novo lipogenesis. Many hypotheses were suggested for this paradoxical action occurring in insulin-resistant rodent models. A "downstream branch point" in the insulin-mediated pathway was suggested to act differentially on the FOXO-1 and SREBP1c pathways. MicroRNAs have been widely studied for their action of pathway mediation via suppressing the intermediate protein expressions. Many in vitro studies have postulated the roles of hepato-specific expressions of miRNAs on insulin cascade. Thus, miRNA would play a pivotal role in selective hepatic insulin resistance. As observed, there were confirmations and contradictions between the outcomes of gene knockout studies conducted on selective hepatic insulin resistance and hepato-specific miRNA expression studies. Furthermore, these studies had evaluated only the effect of miRNAs on glucose metabolism and few on hepatic de novo lipogenesis, limiting the ability to conclude their role in selective hepatic insulin resistance. Future studies conducted on the role of miRNAs on selective hepatic insulin resistance warrant the understanding of this paradoxical action of insulin.


Assuntos
Resistência à Insulina , Fígado , MicroRNAs , Animais , Camundongos , Glucose , Insulina , Resistência à Insulina/genética , MicroRNAs/genética
12.
Epigenet Insights ; 15: 25168657221130041, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262691

RESUMO

MicroRNA(miRNA)s have been identified as an emerging class for therapeutic interventions mainly due to their extracellularly stable presence in humans and animals and their potential for horizontal transmission and action. However, treating Type 2 diabetes mellitus using this technology has yet been in a nascent state. MiRNAs play a significant role in the pathogenesis of Type 2 diabetes mellitus establishing the potential for utilizing miRNA-based therapeutic interventions to treat the disease. Recently, the administration of miRNA mimics or antimiRs in-vivo has resulted in positive modulation of glucose and lipid metabolism. Further, several cell culture-based interventions have suggested beta cell regeneration potential in miRNAs. Nevertheless, few such miRNA-based therapeutic approaches have reached the clinical phase. Therefore, future research contributions would identify the possibility of miRNA therapeutics for tackling T2DM. This article briefly reported recent developments on miRNA-based therapeutics for treating Type 2 Diabetes mellitus, associated implications, gaps, and recommendations for future studies.

13.
Pathol Res Pract ; 233: 153854, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35398617

RESUMO

Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype with higher risk of metastasis and cancer reoccurrence. Cisplatin is one of the potential anticancer drugs for treating TNBC, where its effectiveness remains challenged by frequent occurrence of cisplatin resistance. Since acquirement of drug resistance often being associated with presence of cancer stem cells (CSCs), investigation has been conducted, suggesting CSC-like subpopulation to be more resistant to cisplatin than their parental counterpart. On the other hand, plethora evidences showed the transmission of exosomal-miRNAs are capable of promoting drug resistance in breast cancers. In this study, we aim to elucidate the differential expression of exosomal-microRNAs profile and reveal the potential target genes in correlation to cisplatin resistance associated with CSC-like subpopulation by using TNBC cell line (MDA-MB-231). Utilizing next generation sequencing and Nanostring techniques, cisplatin-induced dysregulation of exosomal-miRNAs were evaluated in maximal for CSC-like subpopulation as compared to parental cells. Intriguingly, more oncogenic exosomal-miRNAs profile was detected from treated CSC-like subpopulation, which may correlate to enhancement of drug resistance and maintenance of CSCs. In treated CSC-like subpopulation, unique clusters of exosomal-miRNAs namely miR-221-3p, miR-196a-5p, miR-17-5p and miR-126-3p were predicted to target on six genes (ATXN1, LATS1, GSK3ß, ITGA6, JAG1 and MYC), aligned with previous finding which demonstrated dysregulation of these genes in treated CSC-like subpopulation. Our results highlight the potential correlation of exosomal-miRNAs and their target genes as well as novel perspectives of the corresponding pathways that may be essential to contribute to the attenuated cytotoxicity of cisplatin in CSC-like subpopulation.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Cisplatino/farmacologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética
14.
Pathol Res Pract ; 230: 153745, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34953353

RESUMO

The rapid development of small RNA and molecular biology research in the past 20 years has enabled scientists to discover many new miRNAs that are proven to play essential roles in regulating the development of different cancer types. Among these miRNAs, miR-1275 is one of the well-studied miRNAs that has been described to act as a tumour-promoting or tumour-suppressing miRNA in various cancer types. Even though miR-1275 has been widely reported in different original research articles on its roles in modulating the progression of different cancer types, however, there is scarce an in-depth review that could constructively summarize the findings from different studies on the regulatory roles of miR-1275 in different cancer types. To fill up this literature gap, therefore, this review was aimed to provide an overview and summary of the roles of miR-1275 in modulating the development of different cancers and to unravel the mechanism of how miR-1275 regulates cancer progression. Based on the findings summarized from various sources, it was found that miR-1275 plays a vital role in regulating various cellular signaling pathways like the PI3K/AKT, ERK/JNK, MAPK, and Wnt signaling pathways, and the dysregulation of this miRNA has been shown to contribute to the development of multiple cancer types such as cancers of the liver, breast, lung, gastrointestinal tract and genitourinary tract. Therefore, miR-1275 has great potential to be employed as a biomarker to diagnose cancer and to predict the prognosis of cancer patients. In addition, by inhibiting the expression of its unique downstream targets that are involved in regulating the mentioned cellular pathways, this miRNA could also be utilized as a novel therapeutic agent to halt cancer development.


Assuntos
Biomarcadores Tumorais/metabolismo , MicroRNAs/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Animais , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Valor Preditivo dos Testes , Prognóstico , Transdução de Sinais/efeitos dos fármacos
15.
Artigo em Inglês | MEDLINE | ID: mdl-34712346

RESUMO

Elephantopus scaber Linn, a traditional herb, exhibited anticancer properties, and it was cytotoxic against the monolayer estrogen receptor-positive breast cancer cell line, MCF-7, in the previous study. In order to determine the potential of E. scaber as a complementary medicine for breast cancer, this study aimed to evaluate the synergism between E. scaber and tamoxifen in cytotoxicity using MCF-7 in the form of 3-dimensional multicellular tumor spheroid (MCTS) cultures. MCTS represents a more reliable model for studying drug penetration as compared to monolayer cells due to its greater resemblance to solid tumor. Combination of E. scaber ethanol extract and tamoxifen, which were used in concentrations lower than their respective IC50 values, had successfully induced apoptosis on MCTS in this study. The combinatorial treatment showed >58% increase of lactate dehydrogenase release in cell media, cell cycle arrest at the S phase, and 1.3 fold increase in depolarization of mitochondrial membrane potential. The treated MCTS also experienced DNA fragmentation; this had been quantified by TUNEL-positive assay, which showed >64% increase in DNA damaged cells. Higher externalization of phospatidylserine and distorted and disintegrated spheroids stained by acridine orange/propidium iodide showed that the cell death was mainly due to apoptosis. Further exploration showed that the combinatorial treatment elevated caspases-8 and 9 activities involving both extrinsic and intrinsic pathways of apoptosis. The treatment also upregulated the expression of proapoptotic gene HSP 105 and downregulated the expression of prosurvival genes such as c-Jun, ICAM1, and VEGF. In conclusion, these results suggested that the coupling of E. scaber to low concentration of tamoxifen showed synergism in cytotoxicity and reducing drug resistance in estrogen receptor-positive breast cancer.

16.
Pharmacol Res ; 172: 105818, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34400316

RESUMO

Osteosarcoma is one of the most prevalent primary bone tumors with a high metastatic and recurrence rate with poor prognosis. MiRNAs are short and non-coding RNAs that could regulate various cellular activities and one of them is the epithelial-to-mesenchymal transition (EMT). Osteosarcoma cells that have undergone EMT would lose their cellular polarity and acquire invasive and metastatic characteristics. Our literature search showed that many pre-clinical and clinical studies have reported the roles of miRNAs in modulating the EMT process in osteosarcoma and compared to other cancers like breast cancer, there is a lack of review article which effectively summarizes the various roles of EMT-regulating miRNAs in osteosarcoma. This review, therefore, was aimed to discuss and summarize the EMT-promoting and EMT-suppressing roles of different miRNAs in osteosarcoma. The review would begin with the discussion on the concepts and principles of EMT, followed by the exploration of the diverse roles of EMT-regulating miRNAs in osteosarcoma. Subsequently, the potential use of miRNAs as prognostic biomarkers in osteosarcoma to predict the likelihood of metastases and as therapeutic agents would be discussed.


Assuntos
Neoplasias Ósseas/genética , Transição Epitelial-Mesenquimal , MicroRNAs , Osteossarcoma/genética , Animais , Neoplasias Ósseas/terapia , Humanos , Osteossarcoma/terapia
17.
Pathol Res Pract ; 225: 153565, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34333398

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are two common betacoronaviruses, which are still causing transmission among the human population worldwide. The major difference between the two coronaviruses is that MERS-CoV is now causing sporadic transmission worldwide, whereas SARS-CoV-2 is causing a pandemic outbreak globally. Currently, different guidelines and reports have highlighted several diagnostic methods and approaches which could be used to screen and confirm MERS-CoV and SARS-CoV-2 infections. These methods include clinical evaluation, laboratory diagnosis (nucleic acid-based test, protein-based test, or viral culture), and radiological diagnosis. With the presence of these different diagnostic approaches, it could cause a dilemma to the clinicians and diagnostic laboratories in selecting the best diagnostic strategies to confirm MERS-CoV and SARS-CoV-2 infections. Therefore, this review aims to provide an up-to-date comparison of the advantages and limitations of different diagnostic approaches in detecting MERS-CoV and SARS-CoV-2 infections. This review could provide insights for clinicians and scientists in detecting MERS-CoV and SARS-CoV-2 infections to help combat the transmission of these coronaviruses.


Assuntos
COVID-19/diagnóstico , Diagnóstico Diferencial , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , SARS-CoV-2/patogenicidade , Sensibilidade e Especificidade , Humanos , Pandemias
18.
PeerJ ; 9: e11165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33976969

RESUMO

Transfection is a modern and powerful method used to insert foreign nucleic acids into eukaryotic cells. The ability to modify host cells' genetic content enables the broad application of this process in studying normal cellular processes, disease molecular mechanism and gene therapeutic effect. In this review, we summarized and compared the findings from various reported literature on the characteristics, strengths, and limitations of various transfection methods, type of transfected nucleic acids, transfection controls and approaches to assess transfection efficiency. With the vast choices of approaches available, we hope that this review will help researchers, especially those new to the field, in their decision making over the transfection protocol or strategy appropriate for their experimental aims.

19.
Pharmaceuticals (Basel) ; 14(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919109

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that promotes a higher risk of metastasis and cancer reoccurrence. Cisplatin is one of the potential anticancer drugs for treating TNBC. However, the occurrence of cisplatin resistance still remains one of the challenges in fully eradicating TNBC. The presence of cancer stem cells (CSCs) has been proposed as one of the factors contributing to the development of cisplatin resistance. In this study, we aimed to characterize the cellular properties and reveal the corresponding putative target genes involved in cisplatin resistance associated with CSCs using the TNBC cell line (MDA-MB-231). CSC-like cells were isolated from parental cells and the therapeutic effect of cisplatin on CSC-like cells was compared to that of the parental cells via cell characterization bioassays. A PCR array was then conducted to study the expression of cellular mRNA for each subpopulation. As compared to treated parental cells, treated CSCs displayed lower events of late apoptosis/necrosis and G2/M phase cell arrest, with higher mammosphere formation capacity. Furthermore, a distinct set of putative target genes correlated to the Hedgehog pathway and angiogenesis were dysregulated solely in CSC-like cells after cisplatin treatment, which were closely related to the regulation of chemoresistance and self-renewability in breast cancer. In summary, both cellular and gene expression studies suggest the attenuated cytotoxicity of cisplatin in CSC-like cells as compared to parental cells. Understanding the role of dysregulated putative target genes induced by cisplatin in CSCs may aid in the potential development of therapeutic targets for cisplatin-resistant breast cancer.

20.
J Chin Med Assoc ; 84(6): 563-576, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33883467

RESUMO

Lung cancer is one of the most prevalent human cancers, and single-cell RNA sequencing (scRNA-seq) has been widely used to study human lung cancer at the cellular, genetic, and molecular level. Even though there are published reviews, which summarized the applications of scRNA-seq in human cancers like breast cancer, there is lack of a comprehensive review, which could effectively highlight the broad use of scRNA-seq in studying lung cancer. This review, therefore, was aimed to summarize the various applications of scRNA-seq in human lung cancer research based on the findings from different published in vitro, in vivo, and clinical studies. The review would first briefly outline the concept and principle of scRNA-seq, followed by the discussion on the applications of scRNA-seq in studying human lung cancer. Finally, the challenges faced when using scRNA-seq to study human lung cancer would be discussed, and the potential applications and challenges of scRNA-seq to facilitate the development of personalized cancer therapy in the future would be explored.


Assuntos
Neoplasias Pulmonares/genética , Medicina de Precisão , Análise de Sequência de RNA , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA