Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Epigenetics Chromatin ; 17(1): 3, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336688

RESUMO

BACKGROUND: Bivalent chromatin is an exemplar of epigenetic plasticity. This co-occurrence of active-associated H3K4me3 and inactive-associated H3K27me3 histone modifications on opposite tails of the same nucleosome occurs predominantly at promoters that are poised for future transcriptional upregulation or terminal silencing. We know little of the dynamics, resolution, and regulation of this chromatin state outside of embryonic stem cells where it was first described. This is partly due to the technical challenges distinguishing bone-fide bivalent chromatin, where both marks are on the same nucleosome, from allelic or sample heterogeneity where there is a mix of H3K4me3-only and H3K27me3-only mononucleosomes. RESULTS: Here, we present a robust and sensitive method to accurately map bivalent chromatin genome-wide, along with controls, from as little as 2 million cells. We optimized and refined the sequential ChIP protocol which uses two sequential overnight immunoprecipitation reactions to robustly purify nucleosomes that are truly bivalent and contain both H3K4me3 and H3K27me3 modifications. Our method generates high quality genome-wide maps with strong peak enrichment and low background, which can be analyzed using standard bioinformatic packages. Using this method, we detect 8,789 bivalent regions in mouse embryonic stem cells corresponding to 3,918 predominantly CpG rich and developmentally regulated gene promoters. Furthermore, profiling Dppa2/4 knockout mouse embryonic stem cells, which lose both H3K4me3 and H3K27me3 at approximately 10% of bivalent promoters, demonstrated the ability of our method to capture bivalent chromatin dynamics. CONCLUSIONS: Our optimized sequential reChIP method enables high-resolution genome-wide assessment of bivalent chromatin together with all required controls in as little as 2 million cells. We share a detailed protocol and guidelines that will enable bivalent chromatin landscapes to be generated in a range of cellular contexts, greatly enhancing our understanding of bivalent chromatin and epigenetic plasticity beyond embryonic stem cells.


Assuntos
Cromatina , Histonas , Animais , Camundongos , Cromatina/genética , Histonas/genética , Nucleossomos , Genoma , Imunoprecipitação da Cromatina , Fatores de Transcrição/genética
2.
Cell Mol Immunol ; 20(9): 983-992, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37429944

RESUMO

Macrophages are critical regulators of tissue homeostasis but are also abundant in the tumor microenvironment (TME). In both primary tumors and metastases, such tumor-associated macrophages (TAMs) seem to support tumor development. While we know that TAMs are the dominant immune cells in the TME, their vast heterogeneity and associated functions are only just being unraveled. In this review, we outline the various known TAM populations found thus far and delineate their specialized roles associated with the main stages of cancer progression. We discuss how macrophages may prime the premetastatic niche to enable the growth of a metastasis and then how subsequent metastasis-associated macrophages can support secondary tumor growth. Finally, we speculate on the challenges that remain to be overcome in TAM research.


Assuntos
Neoplasias , Humanos , Macrófagos , Macrófagos Associados a Tumor , Microambiente Tumoral
3.
J Exp Med ; 220(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37341991

RESUMO

Tumor-draining lymph nodes (TDLNs) are important for tumor antigen-specific T cell generation and effective anticancer immune responses. However, TDLNs are often the primary site of metastasis, causing immune suppression and worse outcomes. Through cross-species single-cell RNA-Seq analysis, we identified features defining cancer cell heterogeneity, plasticity, and immune evasion during breast cancer progression and lymph node metastasis (LNM). A subset of cancer cells in the lymph nodes exhibited elevated MHC class II (MHC-II) gene expression in both mice and humans. MHC-II+ cancer cells lacked costimulatory molecule expression, leading to regulatory T cell (Treg) expansion and fewer CD4+ effector T cells in TDLNs. Genetic knockout of MHC-II reduced LNM and Treg expansion, while overexpression of the MHC-II transactivator, Ciita, worsened LNM and caused excessive Treg expansion. These findings demonstrate that cancer cell MHC-II expression promotes metastasis and immune evasion in TDLNs.


Assuntos
Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/patologia , Plasticidade Celular , Linfonodos , Linfócitos T Reguladores , Metástase Linfática/patologia , Tolerância Imunológica , Melanoma Maligno Cutâneo
4.
Proc Natl Acad Sci U S A ; 120(6): e2219199120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36724255

RESUMO

Immune checkpoint blockers (ICBs) have failed in all phase III glioblastoma trials. Here, we found that ICBs induce cerebral edema in some patients and mice with glioblastoma. Through single-cell RNA sequencing, intravital imaging, and CD8+ T cell blocking studies in mice, we demonstrated that this edema results from an inflammatory response following antiprogrammed death 1 (PD1) antibody treatment that disrupts the blood-tumor barrier. Used in lieu of immunosuppressive corticosteroids, the angiotensin receptor blocker losartan prevented this ICB-induced edema and reprogrammed the tumor microenvironment, curing 20% of mice which increased to 40% in combination with standard of care treatment. Using a bihemispheric tumor model, we identified a "hot" tumor immune signature prior to losartan+anti-PD1 therapy that predicted long-term survival. Our findings provide the rationale and associated biomarkers to test losartan with ICBs in glioblastoma patients.


Assuntos
Glioblastoma , Animais , Camundongos , Glioblastoma/patologia , Losartan/farmacologia , Losartan/uso terapêutico , Inibidores de Checkpoint Imunológico/efeitos adversos , Linfócitos T CD8-Positivos , Edema , Microambiente Tumoral
6.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34725151

RESUMO

Liver metastasis is a major cause of mortality for patients with colorectal cancer (CRC). Mismatch repair-proficient (pMMR) CRCs make up about 95% of metastatic CRCs, and are unresponsive to immune checkpoint blockade (ICB) therapy. Here we show that mouse models of orthotopic pMMR CRC liver metastasis accurately recapitulate the inefficacy of ICB therapy in patients, whereas the same pMMR CRC tumors are sensitive to ICB therapy when grown subcutaneously. To reveal local, nonmalignant components that determine CRC sensitivity to treatment, we compared the microenvironments of pMMR CRC cells grown as liver metastases and subcutaneous tumors. We found a paucity of both activated T cells and dendritic cells in ICB-treated orthotopic liver metastases, when compared with their subcutaneous tumor counterparts. Furthermore, treatment with Feline McDonough sarcoma (FMS)-like tyrosine kinase 3 ligand (Flt3L) plus ICB therapy increased dendritic cell infiltration into pMMR CRC liver metastases and improved mouse survival. Lastly, we show that human CRC liver metastases and microsatellite stable (MSS) primary CRC have a similar paucity of T cells and dendritic cells. These studies indicate that orthotopic tumor models, but not subcutaneous models, should be used to guide human clinical trials. Our findings also posit dendritic cells as antitumor components that can increase the efficacy of immunotherapies against pMMR CRC.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Reparo de Erro de Pareamento de DNA , Células Dendríticas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Interferon gama/uso terapêutico , Neoplasias Hepáticas Experimentais/imunologia , Neoplasias Hepáticas Experimentais/secundário , Masculino , Camundongos Endogâmicos C57BL
7.
Sci Transl Med ; 13(602)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34261799

RESUMO

Hearing loss is one of the most common symptoms of neurofibromatosis type 2 (NF2) caused by vestibular schwannomas (VSs). Fibrosis in the VS tumor microenvironment (TME) is associated with hearing loss in patients with NF2. We hypothesized that reducing the fibrosis using losartan, an FDA-approved antihypertensive drug that blocks fibrotic and inflammatory signaling, could improve hearing. Using NF2 mouse models, we found that losartan treatment normalized the TME by (i) reducing neuroinflammatory IL-6/STAT3 signaling and preventing hearing loss, (ii) normalizing tumor vasculature and alleviating neuro-edema, and (iii) increasing oxygen delivery and enhancing efficacy of radiation therapy. In preparation to translate these exciting findings into the clinic, we used patient samples and data and demonstrated that IL-6/STAT3 signaling inversely associated with hearing function, that elevated production of tumor-derived IL-6 was associated with reduced viability of cochlear sensory cells and neurons in ex vivo organotypic cochlear cultures, and that patients receiving angiotensin receptor blockers have no progression in VS-induced hearing loss compared with patients on other or no antihypertensives based on a retrospective analysis of patients with VS and hypertension. Our study provides the rationale and critical data for a prospective clinical trial of losartan in patients with VS.


Assuntos
Perda Auditiva , Neurilemoma , Neurofibromatose 2 , Animais , Humanos , Losartan/farmacologia , Losartan/uso terapêutico , Camundongos , Estudos Prospectivos , Estudos Retrospectivos , Roedores , Resultado do Tratamento , Microambiente Tumoral
8.
Cancer Immunol Res ; 9(7): 765-778, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33839688

RESUMO

The mechanisms behind the antitumor effects of exercise training (ExTr) are not fully understood. Using mouse models of established breast cancer, we examined here the causal role of CD8+ T cells in the benefit acquired from ExTr in tumor control, as well as the ability of ExTr to improve immunotherapy responses. We implanted E0771, EMT6, MMTV-PyMT, and MCa-M3C breast cancer cells orthotopically in wild-type or Cxcr3-/- female mice and initiated intensity-controlled ExTr sessions when tumors reached approximately 100 mm3 We characterized the tumor microenvironment (TME) using flow cytometry, transcriptome analysis, proteome array, ELISA, and immunohistochemistry. We used antibodies against CD8+ T cells for cell depletion. Treatment with immune checkpoint blockade (ICB) consisted of anti-PD-1 alone or in combination with anti-CTLA-4. ExTr delayed tumor growth and induced vessel normalization, demonstrated by increased pericyte coverage and perfusion and by decreased hypoxia. ExTr boosted CD8+ T-cell infiltration, with enhanced effector function. CD8+ T-cell depletion prevented the antitumor effect of ExTr. The recruitment of CD8+ T cells and the antitumor effects of ExTr were abrogated in Cxcr3-/- mice, supporting the causal role of the CXCL9/CXCL11-CXCR3 pathway. ExTr also sensitized ICB-refractory breast cancers to treatment. Our results indicate that ExTr can normalize the tumor vasculature, reprogram the immune TME, and enhance the antitumor activity mediated by CD8+ T cells via CXCR3, boosting ICB responses. Our findings and mechanistic insights provide a rationale for the clinical translation of ExTr to improve immunotherapy of breast cancer.


Assuntos
Neoplasias da Mama/terapia , Linfócitos T CD8-Positivos/imunologia , Terapia por Exercício , Inibidores de Checkpoint Imunológico/farmacologia , Receptores CXCR3/metabolismo , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linhagem Celular Tumoral , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/metabolismo , Terapia Combinada/métodos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/imunologia , Feminino , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Camundongos Knockout , Condicionamento Físico Animal , Receptores CXCR3/genética , Transdução de Sinais/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
9.
Nat Protoc ; 15(8): 2321-2340, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32681151

RESUMO

We recently developed an in vivo compression device that simulates the solid mechanical forces exerted by a growing tumor on the surrounding brain tissue and delineates the physical versus biological effects of a tumor. This device, to our knowledge the first of its kind, can recapitulate the compressive forces on the cerebellar cortex from primary (e.g., glioblastoma) and metastatic (e.g., breast cancer) tumors, as well as on the cerebellum from tumors such as medulloblastoma and ependymoma. We adapted standard transparent cranial windows normally used for intravital imaging studies in mice to include a turnable screw for controlled compression (acute or chronic) and decompression of the cerebral cortex. The device enables longitudinal imaging of the compressed brain tissue over several weeks or months as the screw is progressively extended against the brain tissue to recapitulate tumor growth-induced solid stress. The cranial window can be simply installed on the mouse skull according to previously established methods, and the screw mechanism can be readily manufactured in-house. The total time for construction and implantation of the in vivo compressive cranial window is <1 h (per mouse). This technique can also be used to study a variety of other diseases or disorders that present with abnormal solid masses in the brain, including cysts and benign growths.


Assuntos
Encéfalo/diagnóstico por imagem , Neuroimagem , Estresse Mecânico , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Força Compressiva , Feminino , Masculino , Camundongos
10.
Nat Biotechnol ; 38(4): 420-425, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32042168

RESUMO

Several cancer immunotherapy approaches, such as immune checkpoint blockade and adoptive T-cell therapy, boost T-cell activity against the tumor, but these strategies are not effective in the absence of T cells specific for displayed tumor antigens. Here we outline an immunotherapy in which endogenous T cells specific for a noncancer antigen are retargeted to attack tumors. The approach relies on the use of antibody-peptide epitope conjugates (APECs) to deliver suitable antigens to the tumor surface for presention by HLA-I. To retarget cytomegalovirus (CMV)-specific CD8+ T cells against tumors, we used APECs containing CMV-derived epitopes conjugated to tumor-targeting antibodies via metalloprotease-sensitive linkers. These APECs redirect pre-existing CMV immunity against tumor cells in vitro and in mouse cancer models. In vitro, APECs activated specifically CMV-reactive effector T cells whereas a bispecific T-cell engager activated both effector and regulatory T cells. Our approach may provide an effective alternative in cancers that are not amenable to checkpoint inhibitors or other immunotherapies.


Assuntos
Anticorpos/imunologia , Linfócitos T CD8-Positivos/transplante , Citomegalovirus/imunologia , Epitopos de Linfócito T/imunologia , Imunoconjugados/uso terapêutico , Neoplasias/terapia , Animais , Anticorpos/química , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Epitopos de Linfócito T/química , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Imunoconjugados/metabolismo , Imunomodulação , Imunoterapia Adotiva , Ativação Linfocitária , Metaloproteinases da Matriz/metabolismo , Camundongos , Neoplasias/imunologia
11.
Nat Biomed Eng ; 3(3): 230-245, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30948807

RESUMO

The compression of brain tissue by a tumour mass is believed to be a major cause of the clinical symptoms seen in patients with brain cancer. However, the biological consequences of these physical stresses on brain tissue are unknown. Here, via imaging studies in patients and by using mouse models of human brain tumours, we show that a subgroup of primary and metastatic brain tumours, classified as nodular on the basis of their growth pattern, exert solid stress on the surrounding brain tissue, causing a decrease in local vascular perfusion as well as neuronal death and impaired function. We demonstrate a causal link between solid stress and neurological dysfunction by applying and removing cerebral compression, which respectively mimic the mechanics of tumour growth and of surgical resection. We also show that, in mice, treatment with lithium reduces solid-stress-induced neuronal death and improves motor coordination. Our findings indicate that brain-tumour-generated solid stress impairs neurological function in patients, and that lithium as a therapeutic intervention could counter these effects.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/fisiopatologia , Lítio/uso terapêutico , Estresse Fisiológico , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologia , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/diagnóstico por imagem , Linhagem Celular Tumoral , Humanos , Camundongos Nus , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Perfusão
12.
Proc Natl Acad Sci U S A ; 114(39): 10455-10460, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28900008

RESUMO

Antiangiogenic therapy with antibodies against VEGF (bevacizumab) or VEGFR2 (ramucirumab) has been proven efficacious in colorectal cancer (CRC) patients. However, the improvement in overall survival is modest and only in combination with chemotherapy. Thus, there is an urgent need to identify potential underlying mechanisms of resistance specific to antiangiogenic therapy and develop strategies to overcome them. Here we found that anti-VEGFR2 therapy up-regulates both C-X-C chemokine ligand 12 (CXCL12) and C-X-C chemokine receptor 4 (CXCR4) in orthotopic murine CRC models, including SL4 and CT26. Blockade of CXCR4 signaling significantly enhanced treatment efficacy of anti-VEGFR2 treatment in both CRC models. CXCR4 was predominantly expressed in immunosuppressive innate immune cells, which are recruited to CRCs upon anti-VEGFR2 treatment. Blockade of CXCR4 abrogated the recruitment of these innate immune cells. Importantly, these myeloid cells were mostly Ly6Clow monocytes and not Ly6Chigh monocytes. To selectively deplete individual innate immune cell populations, we targeted key pathways in Ly6Clow monocytes (Cx3cr1-/- mice), Ly6Chigh monocytes (CCR2-/- mice), and neutrophils (anti-Ly6G antibody) in combination with CXCR4 blockade in SL4 CRCs. Depletion of Ly6Clow monocytes or neutrophils improved anti-VEGFR2-induced SL4 tumor growth delay similar to the CXCR4 blockade. In CT26 CRCs, highly resistant to anti-VEGFR2 therapy, CXCR4 blockade enhanced anti-VEGFR2-induced tumor growth delay but specific depletion of Ly6G+ neutrophils did not. The discovery of CXCR4-dependent recruitment of Ly6Clow monocytes in tumors unveiled a heretofore unknown mechanism of resistance to anti-VEGF therapies. Our findings also provide a rapidly translatable strategy to enhance the outcome of anti-VEGF cancer therapies.


Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias Colorretais/terapia , Monócitos/imunologia , Neutrófilos/imunologia , Receptores CXCR4/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Antígenos Ly/metabolismo , Benzilaminas , Bevacizumab/farmacologia , Proliferação de Células , Quimiocina CXCL12/biossíntese , Ciclamos , Compostos Heterocíclicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/biossíntese , Células Tumorais Cultivadas , Ramucirumab
13.
Clin Cancer Res ; 23(19): 5959-5969, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28600474

RESUMO

Purpose: Angiotensin system inhibitors (ASI) can improve prognosis in multiple cancer types, including pancreatic ductal adenocarcinoma (PDAC). However, no study has examined the effect of ASIs alone or combined with adjuvant chemotherapy in resected PDAC patients.Experimental Design: We performed an analysis of the records of ASI users and nonuser patients with PDAC seen at Massachusetts General Hospital (Boston, MA) between January 2006 and December 2010. To identify mechanisms of ASIs in PDAC, we performed RNA sequencing (RNA-Seq) of resected primary lesions.Results: A total of 794 consecutive patients were included. In 299 resected patients, ASI users experienced longer overall survival (OS) in both univariate (median OS, 36.3 vs. 19.3 months, P = 0.011) and adjusted multivariate [HR, 0.505; 95% confidence interval (CI), 0.339-0.750; P = 0.001] analyses. Propensity score-adjusted analysis also showed a longer median OS for chronic ASI users. In unresected patients, the beneficial effect of ASIs was significant in patients with locally advanced disease, but not in metastatic patients. RNA-Seq analysis revealed in tumors of ASI users (lisinopril) a normalized extracellular matrix, a reduced expression of genes involved in PDAC progression (e.g., WNT and Notch signaling), and an increased expression of genes linked with the activity of T cells and antigen-presenting cells. Finally, chronic use of ASI was associated with a gene expression signature that is predictive of survival in independent validation cohorts.Conclusions: In patients with nonmetastatic PDAC, chronic ASI use is associated with longer OS independently of chemotherapy. Our RNA-Seq analysis suggests that ASIs reduce the malignant potential of cancer cells and stimulate the immune microenvironment in primary PDAC. Clin Cancer Res; 23(19); 5959-69. ©2017 AACR.


Assuntos
Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/imunologia , Angiotensinas/antagonistas & inibidores , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/imunologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Angiotensinas/imunologia , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Prognóstico
14.
F1000Res ; 6: 1618, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30109017

RESUMO

Throughout history, the life sciences have been revolutionised by technological advances; in our era this is manifested by advances in instrumentation for data generation, and consequently researchers now routinely handle large amounts of heterogeneous data in digital formats. The simultaneous transitions towards biology as a data science and towards a 'life cycle' view of research data pose new challenges. Researchers face a bewildering landscape of data management requirements, recommendations and regulations, without necessarily being able to access data management training or possessing a clear understanding of practical approaches that can assist in data management in their particular research domain. Here we provide an overview of best practice data life cycle approaches for researchers in the life sciences/bioinformatics space with a particular focus on 'omics' datasets and computer-based data processing and analysis. We discuss the different stages of the data life cycle and provide practical suggestions for useful tools and resources to improve data management practices.

15.
Sci Transl Med ; 8(360): 360ra135, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27733559

RESUMO

The survival benefit of anti-vascular endothelial growth factor (VEGF) therapy in metastatic colorectal cancer (mCRC) patients is limited to a few months because of acquired resistance. We show that anti-VEGF therapy induced remodeling of the extracellular matrix with subsequent alteration of the physical properties of colorectal liver metastases. Preoperative treatment with bevacizumab in patients with colorectal liver metastases increased hyaluronic acid (HA) deposition within the tumors. Moreover, in two syngeneic mouse models of CRC metastasis in the liver, we show that anti-VEGF therapy markedly increased the expression of HA and sulfated glycosaminoglycans (sGAGs), without significantly changing collagen deposition. The density of these matrix components correlated with increased tumor stiffness after anti-VEGF therapy. Treatment-induced tumor hypoxia appeared to be the driving force for the remodeling of the extracellular matrix. In preclinical models, we show that enzymatic depletion of HA partially rescued the compromised perfusion in liver mCRCs after anti-VEGF therapy and prolonged survival in combination with anti-VEGF therapy and chemotherapy. These findings suggest that extracellular matrix components such as HA could be a potential therapeutic target for reducing physical barriers to systemic treatments in patients with mCRC who receive anti-VEGF therapy.


Assuntos
Bevacizumab/uso terapêutico , Neoplasias Colorretais/patologia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/terapia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Antineoplásicos Imunológicos/efeitos adversos , Antineoplásicos Imunológicos/uso terapêutico , Bevacizumab/efeitos adversos , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Neoplasias Colorretais/terapia , Resistencia a Medicamentos Antineoplásicos , Matriz Extracelular/patologia , Matriz Extracelular/fisiologia , Glicosaminoglicanos/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Hipóxia/etiologia , Hipóxia/fisiopatologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA