Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 19(35): e2301928, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37104825

RESUMO

In photocatalysis, reducing the exciton binding energy and boosting the conversion of excitons into free charge carriers are vital to enhance photocatalytic activity. This work presents a facile strategy of engineering Pt single atoms on a 2D hydrazone-based covalent organic framework (TCOF) to promote H2 production coupled with selective oxidation of benzylamine. The optimised TCOF-Pt SA photocatalyst with 3 wt% Pt single atom exhibited superior performance to TCOF and TCOF-supported Pt nanoparticle catalysts. The production rates of H2 and N-benzylidenebenzylamine over TCOF-Pt SA3 are 12.6 and 10.9 times higher than those over TCOF, respectively. Empirical characterisation and theoretical simulation showed that the atomically dispersed Pt is stabilised on the TCOF support through the coordinated N1 -Pt-C2 sites, thereby induing the local polarization and improving the dielectric constant to reach the low exciton binding energy. These phenomena led to the promotion of exciton dissociation into electrons and holes and the acceleration of the separation and transport of photoexcited charge carriers from bulk to the surface. This work provides new insights into the regulation of exciton effect for the design of advanced polymer photocatalysts.

2.
Nanotechnology ; 33(41)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35777312

RESUMO

It is attractive to explore practical approaches to optimize the photodegraded NO property of TiO2. Herein, a typicalZ-shaped heterojunction C-TiO2/rGO composed of carbon-doped TiO2and reductive graphene oxide (rGO) was constructed to optimize the NO removal efficiency through anin situone-pot hydrothermal process with glucose as reductant and dopant. The C-TiO2/rGO (0.11%) composite displays a remarkable NO removal performance of 40.6% under visible light illumination. It was found that the C-TiO2nanoparticles were tightly attached to the rGO sheets and had strong interactions with rGO, which induced a positive impact on not only the light absorption and photo-generated charge separation but also the NO adsorption and reactive oxygen species formation, resulting in boosted photodegrade NO activity. As to the photodegrade NO process over the C-TiO2/rGO, the HO•and O2•-were the dominant radicals, of which the O2•-radical originated from the interactions between C-TiO2and rGO. We proposed aZ-scheme mechanism to illuminate the advanced photocatalytic activity of C-TiO2/rGO. This work affords an approach to developing effective photocatalysts in the NO purification field.

3.
ChemSusChem ; 15(12): e202200875, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35655290

RESUMO

Invited for this month's cover is the group of Wingkei Ho at The Education University of Hong Kong. The Cover shows the effect of the number of heterojunction knots in an all-organic photocatalyst on the separation of photogenerated carriers. The heterojunction knots could improve the migration efficiency of carriers between Melem and the formed pyromellitic diimide. The oxygen adsorbed on the surface of the material can be reduced by electrons to the reactive oxygen species superoxide anion (⋅O2 - ), thereby achieving the purpose of removing pollutants. The Research Article itself is available at 10.1002/cssc.202200477.


Assuntos
Benzoatos , Triazinas , Catálise , Compostos Heterocíclicos com 3 Anéis
4.
ChemSusChem ; 15(12): e202200477, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35485996

RESUMO

The separation efficiency of photogenerated carriers in the g-C3 N4 system could be improved by the construction of all-organic heterojunctions. However, g-C3 N4 has a large π-π conjugated plane that induces a low number of amino groups (-NH2 ), which are the sites of the heterojunction reaction with organic molecules. In this case, few heterojunction knots can be constructed, and the enhancement effect of the heterojunction cannot be fully displayed. In this study, an all-organic heterojunction with PMDA is constructed with melem instead of g-C3 N4 . Although the photocatalytic activity of melem is far below that of g-C3 N4 , the photocatalytic activity of PI (the all-organic heterojunction constructed with melem) is considerably higher than that of CP (the all-organic heterojunction constructed with g-C3 N4 ). This result is attributed to melem that has more -NH2 groups to form more heterojunction knots, which can enable the effective transfer and separation of electron-hole pairs. These new findings may shed light on the design of all-organic heterojunction photocatalysts.

5.
Angew Chem Int Ed Engl ; 61(27): e202203063, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35475563

RESUMO

Solar-driven CO2 methanation with water is an important route to simultaneously address carbon neutrality and produce fuels. It is challenging to achieve high selectivity in CO2 methanation due to competing reactions. Nonetheless, aspects of the catalyst design can be controlled with meaningful effects on the catalytic outcomes. We report highly selective CO2 methanation with water vapor using a photocatalyst that integrates polymeric carbon nitride (CN) with single Pt atoms. As revealed by experimental characterization and theoretical simulations, the widely explored Pt-CN catalyst is adapted for selective CO2 methanation with our rationally designed synthetic method. The synthesis creates defects in CN along with formation of hydroxyl groups proximal to the coordinated Pt atoms. The photocatalyst exhibits high activity and carbon selectivity (99 %) for CH4 production in photocatalytic CO2 reduction with pure water. This work provides atomic scale insight into the design of photocatalysts for selective CO2 methanation.

6.
Small ; 18(13): e2105484, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35032140

RESUMO

Nitrogen oxide (NOx ) is a family of poisonous and highly reactive gases formed when fuel is burned at high temperatures during anthropogenic behavior. It is a strong oxidizing agent that significantly contributes to the ozone and smog in the atmosphere. Thus, NOx removal is important for the ecological environment upon which the civilization depends. In recent decades, metal-organic frameworks (MOFs) have been regarded as ideal candidates to address these issues because they form a reticular structure between proper inorganic and organic constituents with ultrahigh porosity and high internal surface area. These characteristics render them chemically adaptable for NOx adsorption, separation, sensing, and catalysis. In additional, MOFs enable potential nitric oxide (NO) delivery for the signaling of molecular NO in the human body. Herein, the different advantages of MOFs for coping with current environmental burdens and improving the habitable environment of humans on the basis of NOx adsorption are reviewed.


Assuntos
Estruturas Metalorgânicas , Adsorção , Biologia , Catálise , Humanos , Estruturas Metalorgânicas/química , Óxido Nítrico
7.
J Hazard Mater ; 424(Pt A): 127217, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34879541

RESUMO

To understand the conversion mechanism of photocatalytic gaseous formaldehyde (HCHO) degradation, strontium (Sr)-doped TiO2-x-OV catalysts was designed and synthesized in this study, with comparable HCHO removal performance. Our results proved that foreign-element doping reduced Ti4+ to the lower oxidation state Ti(4- x)+, and that the internal charge kinetics was largely facilitated by the unbalanced electron distribution. Oxygen vacancies (OVs) were developed spontaneously to realize an electron-localized phenomenon in TiO2-x-OV, thereby boosting O2 adsorption and activation for the enhanced generation of reactive oxygen species (ROS). At the chemisorption stage, in-situ DRIFTS spectra and density functional theory calculation results revealed that surface adsorbed O2 (Oads) and lattice O (Olat) engaged in the isomerisation of HCHO to dioxymethylene (DOM) on TiO2-x-OV and TiO2, respectively. Time-resolved DRIFTS spectra under light irradiation revealed that the DOM was then converted to formate and thoroughly oxidized to CO2 and H2O in TiO2-x-OV. While bicarbonate byproducts were detected from DOM hydroxylation or possible side conversion of CO2 in TiO2, owing to insufficient consumption of surface hydroxyl. Our study enhances the understanding on the photocatalytic oxidation of HCHO, thereby promoting the practical application in indoor air purification.

8.
Small Methods ; 5(4): e2001042, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34927853

RESUMO

Broadening the absorption of light to the near-infrared (NIR) region is important in photocatalysis to achieve efficient solar-to-fuel conversion. NIR-responsive photocatalysts that can utilize diffusive solar energy are attractive for alleviating the energy crisis and environmental pollution. Over the past few years, considerable progress on the component and structural design of NIR-responsive photocatalysts have been reported. This study aims to systematically summarize recent progress toward the material design and mechanism optimization of NIR-responsive photocatalysts in this area. Depending on the main strategies for harvesting NIR photons, NIR-responsive photocatalysts can be categorized as direct NIR-light photocatalysts, indirect NIR-light photocatalysts, and photothermal photocatalysts. Furthermore, the construction and application of different NIR-responsive photocatalytic systems are summarized. Conclusions and perspectives are presented to further explore the potential of NIR-responsive photocatalysts in this field.

9.
Adv Sci (Weinh) ; 8(24): e2102376, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34693667

RESUMO

The techniques for the production of the environment have received attention because of the increasing air pollution, which results in a negative impact on the living environment of mankind. Over the decades, burgeoning interest in polymeric carbon nitride (PCN) based photocatalysts for heterogeneous catalysis of air pollutants has been witnessed, which is improved by harvesting visible light, layered/defective structures, functional groups, suitable/adjustable band positions, and existing Lewis basic sites. PCN-based photocatalytic air purification can reduce the negative impacts of the emission of air pollutants and convert the undesirable and harmful materials into value-added or nontoxic, or low-toxic chemicals. However, based on previous reports, the systematic summary and analysis of PCN-based photocatalysts in the catalytic elimination of air pollutants have not been reported. The research progress of functional PCN-based composite materials as photocatalysts for the removal of air pollutants is reviewed here. The working mechanisms of each enhancement modification are elucidated and discussed on structures (nanostructure, molecular structue, and composite) regarding their effects on light-absorption/utilization, reactant adsorption, intermediate/product desorption, charge kinetics, and reactive oxygen species production. Perspectives related to further challenges and directions as well as design strategies of PCN-based photocatalysts in the heterogeneous catalysis of air pollutants are also provided.

10.
Environ Sci Technol ; 55(6): 4054-4063, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33657800

RESUMO

Oxygen activation is a key step in the catalytic oxidation of formaldehyde (HCHO) at room temperature. In this study, we synthesized a carbon/Co3O4 nanocomposite (C-Co3O4) as a solution to the insufficient capability of pristine Co3O4 (P-Co3O4) to activate oxygen for the first time. Oxygen activation was improved via carbon preventing the agglomeration of Co3O4 nanoparticles, resulting in small particles (approximately 7.7 nm) and more exposed active sites (oxygen vacancies and Co3+). The removal efficiency of C-Co3O4 for 1 ppm of HCHO remained above 90%, whereas P-Co3O4 was rapidly deactivated. In static tests, the CO2 selectivity of C-Co3O4 was close to 100%, far exceeding that of P-Co3O4 (42%). Various microscopic analyses indicated the formation and interaction of a composite structure between the C and Co3O4 interface. The carbon composite caused a disorder on the surface lattice of Co3O4, constructing more oxygen vacancies than P-Co3O4. Consequently, the surface reducibility of C-Co3O4 was improved, as was its ability to continuously activate oxygen and H2O into reactive oxygen species (ROS). We speculate that accelerated production of ROS helped rapidly degrade intermediates such as dioxymethylene, formate, and carbonate into CO2. In contrast, carbonate accumulation on P-Co3O4 surfaces containing less ROS may have caused P-Co3O4 inactivation. Compared with noble nanoparticles, this study provides a transition metal-based nanocomposite for HCHO oxidation with high efficiency, high selectivity, and low cost, which is meaningful for indoor air purification.


Assuntos
Nanocompostos , Oxigênio , Carbono , Formaldeído , Temperatura
11.
Adv Mater ; 33(9): e2003521, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33458902

RESUMO

Solving energy and environmental problems through solar-driven photocatalysis is an attractive and challenging topic. Hence, various types of photocatalysts have been developed successively to address the demands of photocatalysis. Graphene-based materials have elicited considerable attention since the discovery of graphene. As a derivative of graphene, nitrogen-doped graphene (NG) particularly stands out. Nitrogen atoms can break the undifferentiated structure of graphene and open the bandgap while endowing graphene with an uneven electron density distribution. Therefore, NG retains nearly all the advantages of original graphene and is equipped with several novel properties, ensuring infinite possibilities for NG-based photocatalysis. This review introduces the atomic and band structures of NG, summarizes in situ and ex situ synthesis methods, highlights the mechanism and advantages of NG in photocatalysis, and outlines its applications in different photocatalysis directions (primarily hydrogen production, CO2 reduction, pollutant degradation, and as photoactive ingredient). Lastly, the central challenges and possible improvements of NG-based photocatalysis in the future are presented. This study is expected to learn from the past and achieve progress toward the future for NG-based photocatalysis.

12.
Sci Bull (Beijing) ; 66(17): 1764-1772, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654384

RESUMO

The rational design and construction of novel two-dimensional (2D) carbon nitrides (CNs) beyond g-C3N4 is a hot topic in the fields of chemistry and materials. Inspired by the polymerisation of urea, we have prepared a series of novel C-C bridged heptazine CNs UOx (where x is the ratio of urea to oxamide, x = 1, 1.5, 2, 2.5, and 3), which are similar to (C6N7)n, upon the introduction of oxamide. As predicted using density functional theory (DFT) calculations, the conjugated structure of UOx was effectively extended from an individual heptazine to the entire material. Consequently, its bandgap was reduced to 2.05 eV, and its absorption band edge was significantly extended to 600 nm. Furthermore, its carrier transfer and separation were significantly enhanced, establishing its superior photocatalytic activity. The optimised UO2 exhibits a superior photocatalytic hydrogen production rate about 108.59 µmol h-1 (using 10 mg of catalyst) with an apparent quantum efficiency (AQE) of 36.12% and 0.33% at 420 and 600 nm, respectively, which is one of the most active novel CNs reported to date. Moreover, UO2 exhibits excellent photocatalytic activity toward the oxidation of diphenylhydrazine to azobenzene with conversion and selectivity reaching ~100%, which represents a promising highly efficient 2D CN material. Regarding phenols degradation, UO2 also displayed significantly higher activity and durability during the degradation of phenol when compared to traditional g-C3N4, highlighting its significant potential for application in energy, environment and photocatalytic organic reactions.

13.
J Hazard Mater ; 403: 123559, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32798792

RESUMO

Excessive synthetic dyestuffs in the aquatic environment pose various ecological and health issues that are detrimental to sustainable development. Adsorption is considered a feasible technique of eliminating dye pollutants from the water environment because of its advantages of high efficiency, low cost, easy operation, and absence of secondary pollution. Among the many dyes, Congo red (CR) is a widely used azo dye. Nickel-based materials, including nickel hydroxide, nickel oxide, nickel-containing layered double hydroxides, nickel-based spinel and metal-organic frameworks, metallic nickel, nickel-based sulfide, and nickel composites, have been extensively studied for CR adsorption due to their morphological diversity, large specific surface area, and strong affinity toward CR. However, fabricating nickel-based adsorbents with high efficiency and stability and excellent recyclability for practical application remains a challenge. This review outlines the research progress of nickel-based materials in CR adsorption. The interaction between CR molecules and nickel-based adsorbents is systematically presented, and the possible adsorption mechanisms are summarized. Finally, the challenges and future development directions of the practical application of nickel-based adsorbent materials are proposed.

14.
ACS Appl Mater Interfaces ; 12(46): 51555-51562, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33156604

RESUMO

The reasonable construction of heterojunction photocatalysts with clear nanostructures and a good interface contact especially the one-dimensional/two-dimensional (1D/2D) composite heterojunction with unique morphology is considered one of the most effective strategies for designing highly efficient photocatalysts. Herein, a series of the 1D ß-keto-enamine-based covalent organic framework (COF)/2D g-C3N4 composite materials COF-CN (1:x; where 1:x represents the mass ratio of COF and g-C3N4, x = 2.5, 5, 10, 15, 20) is prepared through the in situ reaction of 2,4,6-triformylphloroglucinol (Tp) and benzidine (BD) in stripped g-C3N4 suspension. A series of characterizations, such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), have verified their 1D/2D heterojunction structure. With the introduction of 1D COF nanobelts, the absorption of the composite is largely extended to 560 nm. Photocatalytic experiments reveal that the composite COF/CN shows evidently superior photocatalytic performance than individual COF and g-C3N4. The optimized COF-CN (1:10) exhibits a H2 production rate of 12.8 mmol g-1·h-1 under visible-light (λ ≥ 420 nm) irradiation, which is about 62 and 284 times higher than those of COF and g-C3N4, respectively. The apparent quantum efficiency (AQE) of COF-CN (1:10) is about 15.09% under 500 nm light irradiation, which is one of the highest among previous COF- or g-C3N4-based materials. This work provides important strategies for designing and constructing high-efficiency heterojunction photocatalysts with multidimensional features.

15.
Nanoscale ; 12(13): 7206-7213, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32195499

RESUMO

The photocatalytic reduction of CO2 into valuable hydrocarbon fuels via solar energy is a promising strategy for carbon utilization. In the present paper, a hierarchical Ni-NiS/C/ZnO photocatalyst was prepared via the in situ photodeposition of compact Ni-NiS nanosheets onto C/ZnO electrospun nanofibers. The existence of metallic Ni and NiS was confirmed by X-ray photoelectron spectroscopy. Photoluminescence (PL) and time-resolved PL spectra revealed that the cocatalyst Ni-NiS enhanced the charge separation efficiency of the C/ZnO nanofibers. The as-prepared Ni-NiS/C/ZnO showed enhanced CO2 reduction activity, with CO and CH4 production rates 10 and 15 times greater than those of pristine C/ZnO under 350 W visible light illumination. The intermediates of CH3O-, HCHO, and HCOO- were detected by in situ Fourier transform infrared spectroscopy, confirming that CO2 reduction is a complex reaction with multiple steps. The 13C isotopic tracer method proved that CH4 and CO were obtained from the reduction of CO2 rather than from other carbon species in the environment. The amorphous carbon in C/ZnO could promote optical absorption, improve conductivity and reduce the interfacial charge transport resistance. Ni-NiS improved the electron-hole-pair separation of the C/ZnO nanofibers. The observed enhancement in photocatalytic activity was largely attributed to higher light utilization and effective electron-hole separation. This work proves that Ni-NiS is a promising cocatalyst to ZnO for photocatalytic CO2 reduction.

16.
Small ; 16(13): e1907290, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32105383

RESUMO

Traditional carbon materials have demonstrated immense potential in perovskite solar cells (PSCs) owing to their superior electrical properties and environmental stability. Graphdiyne (GDY), as an emerging carbon allotrope, features uniformly distributed pores, endless design flexibility, and unique electronic character compared with traditional carbon materials. Herein, graphdiyne is introduced into the upper part of the perovskite (CH3 NH3 PbI3 ) layer by utilizing a GDY-containing antisolvent during the one-step synthesis of perovskite. Intriguingly, GDY plays an essential role in hole accumulation and transportation because of its higher Fermi level than perovskite. As a result, the automatic separation of photogenerated carriers inside the perovskite film is achieved. Furthermore, the Schottky barrier formed on the interface between perovskite and GDY guarantees the unidirectional hole transport from perovskite to GDY, thereby benefiting further extraction to the hole transport layer. Consequently, GDY-modified perovskite-based planar PSCs exhibit a boosted Jsc of 24.21 mA cm-2 and up to 19.6% power conversion efficiency owing to the increased efficient light utilization and charge extraction. The device with GDY modification exhibits less than 10% shrinkage after a month in ambience. Overall, this work demonstrates an easy method for the utilization of GDY to boost the charge extraction and environmental stability in PSCs.

17.
Environ Int ; 133(Pt B): 105246, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31675567

RESUMO

Benzophenones (BPs) and other ultra violet (UV) filters (UV-filters) are widely used in sunblock and other personal care products, raising concerns about their adverse health risks to human, especially for children. In the present study, BP-type UV-filters and other four widely used UV-filters were evaluated in the child urinary samples (4-6 years, n = 53), tap water and commercial distilled water in Hong Kong. The results suggested that the target chemicals are ubiquitous in the subject. BP1, BP2, BP3 and BP4 in children urine samples contributed closely to the overall children exposure of UV filters, with detection rates above 58% and geometric means ranging from 44.2 to 76.7 ng/mL. As a contrast, BP3 was the major substance found in the tap water and distilled bottle water, with detection rates of 100% and geometric means of 9.64 and 14.5 ng/L, respectively. There were some significant relationships between urinary UV filters and personal characteristics (BMI values, sex, income level, hand washing frequency, and body location usage), but the health risks associated with UV-filters in Hong Kong children might not be concerning. Only two children applied sun creams in this research, indicating that there were other sources to exposure these chemicals.


Assuntos
Benzofenonas/urina , Água Potável/química , Exposição Ambiental/análise , Protetores Solares/análise , Poluentes Químicos da Água/urina , Benzofenonas/análise , Pré-Escolar , Hong Kong , Humanos , Poluentes Químicos da Água/análise
18.
Ecotoxicol Environ Saf ; 183: 109502, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31394373

RESUMO

The urine levels of organophosphate flame retardants (PFRs) and bisphenol A (BPA) in kindergarten children (n = 31, 4-6 years old, sampling performed in 2016) in Hong Kong were measured. The detection frequency of the target PFRs, tri(2-chloroethyl)phosphate (TCEP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), tris(chloroisopropyl)phosphate (TCIPP), triphenyl phosphate (TPHP) and 2-ethylhexyl diphenyl phosphate (EHDPP) ranged from 52% to 84%. The 95th percentile urinary concentrations of TPHP, TDCIPP, TCIPP, EHDPP and TCEP were 1.70, 0.24, 0.03, 0.05, 0.68 and 0.03 ng/mL, respectively. The median urine level of BPA was 1.69 ng/mL, with a detection frequency of 77%. Due to the lack of metabolism information, two scenarios were used to calculate the estimated daily intake (EDI) of these compounds. Back-calculated EDIs of PFRs using the urinary excretion rates from in vivo animal data (scenario 2) were up to 2.97 µg/kg/d (TDCIPP), which was only a little less than that observed in a sample of American infants, and the reference dose (RfD), meaning that the potential health risk of TDCIPP cannot be ignored. Dust ingestion was suggested to be the major pathway of exposure to PFRs, but when the levels in dust and air particles in kindergartens in Hong Kong were used to predict EDIs, these values were nearly half as much as those predicted from urinary TDCIPP in this study. This suggested that children's PFRs burden may be underestimated when considering only PFR levels in dust or air. There is thus a need for further studies with large-scale surveys and investigation of exposure routes.


Assuntos
Compostos Benzidrílicos/urina , Exposição Ambiental/análise , Retardadores de Chama/análise , Organofosfatos/urina , Fenóis/urina , Criança , Pré-Escolar , Poeira/análise , Hong Kong , Humanos
19.
Environ Sci Technol ; 53(18): 10906-10916, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31441306

RESUMO

Crystal facet-dominated surfaces determine the formation of surface-active complexes, and engineering specific facets is desirable for improving the catalytic activity of routine transition-metal oxides that often deactivate at low temperatures. Herein, MnOx-CeO2 was synthetically administered to tailor the exposure of three major facets, and their distinct surface-active complexes concerning the formation and quantitative effects of oxygen vacancies, catalytically active zones, and active-site behaviors were unraveled. Compared with two other low-index facets {110} and {001}, MnOx-CeO2 with exposed {111} facet showed higher activity for formaldehyde oxidation and CO2 selectivity. However, the {110} facet did not increase activity despite generating additional oxygen vacancies. Oxygen vacancies were highly stable on the {111} facet, and its bulk lattice oxygen at high migration rates could replenish the consumption of surface lattice oxygen, which was associated with activity and stability. High catalytically active regions were exposed at the {111}-dominated surfaces, wherein the predominated Lewis acid-base properties facilitated oxygen mobility and activation. The mineralization pathways of formaldehyde were examined by a combination of in situ X-ray photoemission spectroscopy and diffuse reflectance infrared Fourier transform spectrometry. The MnOx-CeO2-111 catalysts were subsequently scaled up to work as filter substrates in a household air cleaner. In in-field pilot tests, 8 h of exposure to an average concentration of formaldehyde after start-up of the air cleaner attained the Excellent Class of Indoor Air Quality Objectives in Hong Kong.


Assuntos
Formaldeído , Óxidos , Catálise , Hong Kong , Oxirredução
20.
ACS Appl Mater Interfaces ; 11(31): 27934-27943, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31319023

RESUMO

Construction of various nanostructure g-C3N4, especially those with a tubular structure, is gaining considerable research interest because of their large specific surface area, high carrier transport efficiency, and excellent mass transfer. In this study, a novel multistage tubular g-C3N4 (TCN) has been prepared by the copolymerization of melamine formaldehyde (MF) resin with urea. With the introduction of MF resin, the electrostructure of TCN and its hydrophilicity property have been obviously ameliorated, thereby enhancing its visible-light absorption and improving the interface contact between TCN and water. Moreover, photocurrent response and electrochemical impedance spectra indicate that the special multistage tubular structure facilitates the spatial charge transfer and photogenerated carrier separation. Thus, the as-prepared TCN exhibits excellent photoactivities under visible-light irradiation. Among the samples, TCN-0.1 shows the best performance. Its hydrogen evolution rate is approximately 7505 µmol·g-1·h-1, which is 6.05 times greater than that of g-C3N4 (prepared by urea at 600 °C), and its apparent quantum efficiency is nearly 19.2% at 400 nm. In addition, TCN is also endowed with outstanding visible-light performance and durability for the degradation of tetracycline and methyl orange. This work might provide a significant inspiration for the design of new, highly efficient g-C3N4-based materials and further deepen our understanding of the preparation of tubular photocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA