Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Rheumatology (Oxford) ; 63(1): 103-110, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37074923

RESUMO

OBJECTIVE: Stratifying the risk of death in SSc-related interstitial lung disease (SSc-ILD) is a challenging issue. The extent of lung fibrosis on high-resolution CT (HRCT) is often assessed by a visual semiquantitative method that lacks reliability. We aimed to assess the potential prognostic value of a deep-learning-based algorithm enabling automated quantification of ILD on HRCT in patients with SSc. METHODS: We correlated the extent of ILD with the occurrence of death during follow-up, and evaluated the additional value of ILD extent in predicting death based on a prognostic model including well-known risk factors in SSc. RESULTS: We included 318 patients with SSc, among whom 196 had ILD; the median follow-up was 94 months (interquartile range 73-111). The mortality rate was 1.6% at 2 years and 26.3% at 10 years. For each 1% increase in the baseline ILD extent (up to 30% of the lung), the risk of death at 10 years was increased by 4% (hazard ratio 1.04, 95% CI 1.01, 1.07, P = 0.004). We constructed a risk prediction model that showed good discrimination for 10-year mortality (c index 0.789). Adding the automated quantification of ILD significantly improved the model for 10-year survival prediction (P = 0.007). Its discrimination was only marginally improved, but it improved prediction of 2-year mortality (difference in time-dependent area under the curve 0.043, 95% CI 0.002, 0.084, P = 0.040). CONCLUSION: The deep-learning-based, computer-aided quantification of ILD extent on HRCT provides an effective tool for risk stratification in SSc. It might help identify patients at short-term risk of death.


Assuntos
Doenças Pulmonares Intersticiais , Escleroderma Sistêmico , Humanos , Prognóstico , Reprodutibilidade dos Testes , Capacidade Vital , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Doenças Pulmonares Intersticiais/etiologia , Doenças Pulmonares Intersticiais/epidemiologia , Pulmão , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/diagnóstico por imagem , Tomografia Computadorizada por Raios X
2.
Jpn J Radiol ; 41(3): 235-244, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36350524

RESUMO

Artificial intelligence (AI) has been a very active research topic over the last years and thoracic imaging has particularly benefited from the development of AI and in particular deep learning. We have now entered a phase of adopting AI into clinical practice. The objective of this article was to review the current applications and perspectives of AI in thoracic oncology. For pulmonary nodule detection, computer-aided detection (CADe) tools have been commercially available since the early 2000s. The more recent rise of deep learning and the availability of large annotated lung nodule datasets have allowed the development of new CADe tools with fewer false-positive results per examination. Classical machine learning and deep-learning methods were also used for pulmonary nodule segmentation allowing nodule volumetry and pulmonary nodule characterization. For pulmonary nodule characterization, radiomics and deep-learning approaches were used. Data from the National Lung Cancer Screening Trial (NLST) allowed the development of several computer-aided diagnostic (CADx) tools for diagnosing lung cancer on chest computed tomography. Finally, AI has been used as a means to perform virtual biopsies and to predict response to treatment or survival. Thus, many detection, characterization and stratification tools have been proposed, some of which are commercially available.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Inteligência Artificial , Neoplasias Pulmonares/patologia , Detecção Precoce de Câncer , Tomografia Computadorizada por Raios X
3.
J Pers Med ; 12(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36143214

RESUMO

With the rapid development of computing today, artificial intelligence has become an essential part of everyday life, with medicine and lung health being no exception. Big data-based scientific research does not mean simply gathering a large amount of data and letting the machines do the work by themselves. Instead, scientists need to identify problems whose solution will have a positive impact on patients' care. In this review, we will discuss the role of artificial intelligence from both physiological and anatomical standpoints, starting with automatic quantitative assessment of anatomical structures using lung imaging and considering disease detection and prognosis estimation based on machine learning. The evaluation of current strengths and limitations will allow us to have a broader view for future developments.

4.
J Clin Med ; 11(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743615

RESUMO

We aimed to investigate the performance of a chest X-ray (CXR) scoring scale of lung injury in prediction of death and ICU admission among patients with COVID-19 during the 2021 peak pandemic in HCM City, Vietnam. CXR and clinical data were collected from Vinmec Central Park-hospitalized patients from July to September 2021. Three radiologists independently assessed the day-one CXR score consisting of both severity and extent of lung lesions (maximum score = 24). Among 219 included patients, 28 died and 34 were admitted to the ICU. There was a high consensus for CXR scoring among radiologists (κ = 0.90; CI95%: 0.89-0.92). CXR score was the strongest predictor of mortality (tdAUC 0.85 CI95% 0.69-1) within the first 3 weeks after admission. A multivariate model confirmed a significant effect of an increased CXR score on mortality risk (HR = 1.33, CI95%: 1.10 to 1.62). At a threshold of 16 points, the CXR score allowed for predicting in-hospital mortality and ICU admission with good sensitivity (0.82 (CI95%: 0.78 to 0.87) and 0.86 (CI95%: 0.81 to 0.90)) and specificity (0.89 (CI95%: 0.88 to 0.90) and 0.87 (CI95%: 0.86 to 0.89)), respectively, and can be used to identify high-risk patients in needy countries such as Vietnam.

5.
Eur Respir J ; 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795038

RESUMO

OBJECTIVES: Lumacaftor-ivacaftor is a cystic fibrosis transmembrane conductance regulator (CFTR) modulator known to improve clinical status in people with cystic fibrosis (CF). This study aimed to assess lung structural changes after one year of lumacaftor-ivacaftor treatment, and to use unsupervised machine learning to identify morphological phenotypes of lung disease that are associated with response to lumacaftor-ivacaftor. METHODS: Adolescents and adults with CF from the French multicenter real-world prospective observational study evaluating the first year of treatment with lumacaftor-ivacaftor were included if they had pretherapeutic and follow-up chest computed tomography (CT)-scans available. CT scans were visually scored using a modified Bhalla score. A k-mean clustering method was performed based on 120 radiomics features extracted from unenhanced pretherapeutic chest CT scans. RESULTS: A total of 283 patients were included. The Bhalla score significantly decreased after 1 year of lumacaftor-ivacaftor (-1.40±1.53 points compared with pretherapeutic CT; p<0.001). This finding was related to a significant decrease in mucus plugging (-0.35±0.62 points; p<0.001), bronchial wall thickening (-0.24±0.52 points; p<0.001) and parenchymal consolidations (-0.23±0.51 points; p<0.001). Cluster analysis identified 3 morphological clusters. Patients from cluster C were more likely to experience an increase in percent predicted forced expiratory volume in 1 sec (ppFEV1) ≥5 under lumacaftor-ivacaftor than those in the other clusters (54% of responders versus 32% and 33%; p=0.01). CONCLUSION: One year treatment with lumacaftor-ivacaftor was associated with a significant visual improvement of bronchial disease on chest CT. Radiomics features on pretherapeutic CT scan may help in predicting lung function response under lumacaftor-ivacaftor.

6.
Diagn Interv Imaging ; 102(11): 691-695, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34686464

RESUMO

PURPOSE: The purpose of this study was to determine whether a single reconstruction kernel or both high and low frequency kernels should be used for training deep learning models for the segmentation of diffuse lung disease on chest computed tomography (CT). MATERIALS AND METHODS: Two annotated datasets of COVID-19 pneumonia (323,960 slices) and interstitial lung disease (ILD) (4,284 slices) were used. Annotated CT images were used to train a U-Net architecture to segment disease. All CT slices were reconstructed using both a lung kernel (LK) and a mediastinal kernel (MK). Three different trainings, resulting in three different models were compared for each disease: training on LK only, MK only or LK+MK images. Dice similarity scores (DSC) were compared using the Wilcoxon signed-rank test. RESULTS: Models only trained on LK images performed better on LK images than on MK images (median DSC = 0.62 [interquartile range (IQR): 0.54, 0.69] vs. 0.60 [IQR: 0.50, 0.70], P < 0.001 for COVID-19 and median DSC = 0.62 [IQR: 0.56, 0.69] vs. 0.50 [IQR 0.43, 0.57], P < 0.001 for ILD). Similarly, models only trained on MK images performed better on MK images (median DSC = 0.62 [IQR: 0.53, 0.68] vs. 0.54 [IQR: 0.47, 0.63], P < 0.001 for COVID-19 and 0.69 [IQR: 0.61, 0.73] vs. 0.63 [IQR: 0.53, 0.70], P < 0.001 for ILD). Models trained on both kernels performed better or similarly than those trained on only one kernel. For COVID-19, median DSC was 0.67 (IQR: =0.59, 0.73) when applied on LK images and 0.67 (IQR: 0.60, 0.74) when applied on MK images (P < 0.001 for both). For ILD, median DSC was 0.69 (IQR: 0.63, 0.73) when applied on LK images (P = 0.006) and 0.68 (IQR: 0.62, 0.72) when applied on MK images (P > 0.99). CONCLUSION: Reconstruction kernels impact the performance of deep learning-based models for lung disease segmentation. Training on both LK and MK images improves the performance.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador , Pulmão/diagnóstico por imagem , SARS-CoV-2 , Tomografia Computadorizada por Raios X
7.
Cancers (Basel) ; 13(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33920022

RESUMO

There is no standardization in methods to assess sarcopenia; in particular the prognostic significance of muscular fatty infiltration in lung cancer patients undergoing surgery has not been evaluated so far. We thus performed several computed tomography (CT)-based morphometric measurements of sarcopenia in 238 consecutive non-small cell lung-cancer patients undergoing pneumonectomy from 1 January 2007 to 31 December 2015. Sarcopenia was assessed by the following CT-based parameters: cross-sectional total psoas area (TPA), cross-sectional total muscle area (TMA), and total parietal muscle area (TPMA), defined as TMA without TPA. Measures were performed at the level of the third lumbar vertebra and were obtained for the entire muscle surface, as well as by excluding fatty infiltration based on CT attenuation. Findings were stratified for gender, and a threshold of the 33rd percentile was set to define sarcopenia. Furthermore, we assessed the possibility of being sarcopenic at both the TPA and TPMA level, or not, by taking into account of not fatty infiltration. Five-year survival was 39.1% for the whole population. Lower TPA, TMA, and TPA were associated with lower survival at univariate analysis; taking into account muscular fatty infiltration did not result in more powerful discrimination. Being sarcopenic at both psoas and parietal muscle level had the optimum discriminating power. At the multivariable analysis, being sarcopenic at both psoas and parietal muscles (considering the whole muscle areas, including muscular fat), male sex, increasing age, and tumor stage, as well as Charlson Comorbidity Index (CCI), were independently associated with worse long-term outcomes. We conclude that sarcopenia is a powerful negative prognostic factor in patients with lung cancer treated by pneumonectomy.

8.
J Clin Med ; 10(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920108

RESUMO

Chronic lung allograft dysfunction (CLAD) remains the leading cause of morbidity and mortality after lung transplantation. The term encompasses both obstructive and restrictive phenotypes, as well as mixed and undefined phenotypes. Imaging, in addition to pulmonary function tests, plays a major role in identifying the CLAD phenotype and is essential for follow-up after lung transplantation. Quantitative imaging allows for the performing of reader-independent precise evaluation of CT examinations. In this review article, we will discuss the role of quantitative imaging methods for evaluating the airways and the lung parenchyma on computed tomography (CT) images, for an early identification of CLAD and for prognostic estimation. We will also discuss their limits and the need for novel approaches to predict, understand, and identify CLAD in its early stages.

9.
Med Image Anal ; 67: 101860, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33171345

RESUMO

Coronavirus disease 2019 (COVID-19) emerged in 2019 and disseminated around the world rapidly. Computed tomography (CT) imaging has been proven to be an important tool for screening, disease quantification and staging. The latter is of extreme importance for organizational anticipation (availability of intensive care unit beds, patient management planning) as well as to accelerate drug development through rapid, reproducible and quantified assessment of treatment response. Even if currently there are no specific guidelines for the staging of the patients, CT together with some clinical and biological biomarkers are used. In this study, we collected a multi-center cohort and we investigated the use of medical imaging and artificial intelligence for disease quantification, staging and outcome prediction. Our approach relies on automatic deep learning-based disease quantification using an ensemble of architectures, and a data-driven consensus for the staging and outcome prediction of the patients fusing imaging biomarkers with clinical and biological attributes. Highly promising results on multiple external/independent evaluation cohorts as well as comparisons with expert human readers demonstrate the potentials of our approach.


Assuntos
Inteligência Artificial , COVID-19/diagnóstico por imagem , Pneumonia Viral/diagnóstico por imagem , Biomarcadores/análise , Progressão da Doença , Humanos , Redes Neurais de Computação , Prognóstico , Interpretação de Imagem Radiográfica Assistida por Computador , SARS-CoV-2 , Triagem
10.
Radiology ; 298(1): 189-198, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33078999

RESUMO

Background Longitudinal follow-up of interstitial lung diseases (ILDs) at CT mainly relies on the evaluation of the extent of ILD, without accounting for lung shrinkage. Purpose To develop a deep learning-based method to depict worsening of ILD based on lung shrinkage detection from elastic registration of chest CT scans in patients with systemic sclerosis (SSc). Materials and Methods Patients with SSc evaluated between January 2009 and October 2017 who had undergone at least two unenhanced supine CT scans of the chest and pulmonary function tests (PFTs) performed within 3 months were retrospectively included. Morphologic changes on CT scans were visually assessed by two observers and categorized as showing improvement, stability, or worsening of ILD. Elastic registration between baseline and follow-up CT images was performed to obtain deformation maps of the whole lung. Jacobian determinants calculated from the deformation maps were given as input to a deep learning-based classifier to depict morphologic and functional worsening. For this purpose, the set was randomly split into training, validation, and test sets. Correlations between mean Jacobian values and changes in PFT measurements were evaluated with the Spearman correlation. Results A total of 212 patients (median age, 53 years; interquartile range, 45-62 years; 177 women) were included as follows: 138 for the training set (65%), 34 for the validation set (16%), and 40 for the test set (21%). Jacobian maps demonstrated lung parenchyma shrinkage of the posterior lung bases in patients found to have worsened ILD at visual assessment. The classifier detected morphologic and functional worsening with an accuracy of 80% (32 of 40 patients; 95% confidence interval [CI]: 64%, 91%) and 83% (33 of 40 patients; 95% CI: 67%, 93%), respectively. Jacobian values correlated with changes in forced vital capacity (R = -0.38; 95% CI: -0.25, -0.49; P < .001) and diffusing capacity for carbon monoxide (R = -0.42; 95% CI: -0.27, -0.54; P < .001). Conclusion Elastic registration of CT scans combined with a deep learning classifier aided in the diagnosis of morphologic and functional worsening of interstitial lung disease in patients with systemic sclerosis. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Verschakelen in this issue.


Assuntos
Aprendizado Profundo , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Escleroderma Sistêmico/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Feminino , Humanos , Estudos Longitudinais , Pulmão/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
11.
Lung Cancer ; 149: 130-136, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33011374

RESUMO

OBJECTIVES: Sarcopenia is associated with poor outcome in cancer-patients. However, the methods to define sarcopenia are not entirely standardized. We compared several morphometric measurements of sarcopenia and their prognostic value in short-term-outcome prediction after pneumonectomy. MATERIAL AND METHODS: Consecutive lung-cancer patients undergoing pneumonectomy from January 2007 to December 2015 and having a pre-operative computed tomography (CT) scan were retrospectively included. Sarcopenia was assessed by the following CT-based parameters measured at the level of the third lumbar vertebra: cross-sectional Total Psoas Area (TPA), cross-sectional Total Muscle Area (TMA), and Total Parietal Muscle Area (TPMA), defined as TMA without TPA. Measures were obtained for entire muscle surface, as well as by excluding fatty infiltration based on CT attenuation. Findings were stratified for gender, and a threshold of 33rd percentile was set to define sarcopenia. Acute Respiratory Failure (ARF), Acute Respiratory Distress Syndrome (ARDS), and 30-day mortality were assessed as parameters of short-term-outcome. RESULTS: Two hundred thirty-four patients with pneumonectomy (right, n = 107; left, n = 127) were analysed. Postoperative mortality rate was 9.0 % (21/234), 17.1 % of patients (40/234) experienced ARF requiring re-intubation, and 10.3 % (24/234) had ARDS. All parameters describing sarcopenia gave significant results; the best discriminating parameter was TMA after excluding fat (p < 0.001). While right sided pneumonectomy and sarcopenia were independently associated to the three short-term outcome parameters, Charlson Comorbidity Index only independently predicted ARF. CONCLUSIONS: Sarcopenia defined as the sex-related 33rd percentile of fat-excluded TMA at the level of the third lumbar vertebra is the most discriminating parameter to assess short-term-outcome in patients undergoing pneumonectomy.


Assuntos
Neoplasias Pulmonares , Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Sarcopenia , Estudos Transversais , Humanos , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/epidemiologia , Síndrome do Desconforto Respiratório/etiologia , Estudos Retrospectivos , Fatores de Risco , Sarcopenia/diagnóstico , Sarcopenia/epidemiologia , Sarcopenia/etiologia
12.
BMC Pulm Med ; 18(1): 194, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30563485

RESUMO

BACKGROUND: The present study aimed to develop an automated computed tomography (CT) score based on the CT quantification of high-attenuating lung structures, in order to provide a quantitative assessment of lung structural abnormalities in patients with Primary Ciliary Dyskinesia (PCD). METHODS: Adult (≥18 years) PCD patients who underwent both chest CT and spirometry within a 6-month period were retrospectively included. Commercially available lung segmentation software was used to isolate the lungs from the mediastinum and chest wall and obtain histograms of lung density. CT-density scores were calculated using fixed and adapted thresholds based on various combinations of histogram characteristics, such as mean lung density (MLD), skewness, and standard deviation (SD). Additionally, visual scoring using the Bhalla score was performed by 2 independent radiologists. Correlations between CT scores, forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) were evaluated. RESULTS: Sixty-two adult patients with PCD were included. Of all histogram characteristics, those showing good positive or negative correlations to both FEV1 and FVC were SD (R = - 0.63 and - 0.67; p < 0.001) and Skewness (R = 0.67 and 0.67; p < 0.001). Among all evaluated thresholds, the CT-density score based on MLD + 1SD provided the best negative correlation with both FEV1 (R = - 0.68; p < 0.001) and FVC (R = - 0.71; p < 0.001), close to the correlations of the visual score (R = - 0.60; p < 0.001 for FEV1 and R = - 0.62; p < 0.001, for FVC). CONCLUSIONS: Automated CT scoring of lung structural abnormalities lung in primary ciliary dyskinesia is feasible and may prove useful for evaluation of disease severity in the clinic and in clinical trials.


Assuntos
Transtornos da Motilidade Ciliar/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador , Síndrome de Kartagener/diagnóstico por imagem , Pneumopatias/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adulto , Transtornos da Motilidade Ciliar/complicações , Transtornos da Motilidade Ciliar/fisiopatologia , Feminino , Volume Expiratório Forçado , Humanos , Síndrome de Kartagener/complicações , Síndrome de Kartagener/fisiopatologia , Pneumopatias/etiologia , Pneumopatias/fisiopatologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Índice de Gravidade de Doença , Capacidade Vital , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA