RESUMO
Two spherical nanoparticulate materials were prepared by base-catalyzed sol-gel hydrolysis/self-condensation of the bis-Cinchona alkaloid-phthalazine-based bridged bis(triethoxysilanes). For the purpose of comparing the catalytic properties, two compact materials were also prepared from the same precursors using a fluoride-catalyzed sol-gel process. All materials were characterized by SEM, TEM, solid-state 29Si NMR and 13C NMR, TGA, and FTIR. The prepared silsesquioxane-based materials were studied as potential heterogeneous catalysts for selected enantioselective reactions. The spherical material with regularly incorporated bis-quinine-phthalazine chiral units exhibited good to excellent enantioselectivities in osmium-catalyzed dihydroxylations of alkenes. Enantioselectivities observed in dihydroxylations of aromatic trans-alkenes were as excellent as those observed with the homogeneous catalyst (DHQ)2-PHAL. One compact and one nanoparticulate material was successfully recycled and reused five times without loss of enantioselectivity. Furthermore, both quinine-based and cinchonine-based materials were tested as heterogeneous organocatalysts for chlorolactonization of 4-arylpent-4-enoic acids. The materials showed only moderate enantioselectivities; however, these are the first heterogeneous catalysts for enantioselective chlorolactonization published so far.
RESUMO
The human uses of mushrooms and cultured mycelium products for nutrition and medicine are detailed and supported by available human studies, which in many cases are clinical trials published in peer-reviewed journals. The major medically active immunomodulating compounds in the cell walls-chitin, beta-glucans, and glycoproteins, as well as lower weight molecules-nitrogen-containing compounds, phenolics, and terpenes-are discussed in relation to their current clinical uses. The nutritional content and foods derived from mushrooms, particularly related to their medical benefits, are discussed. High-quality major nutrients such as the high amounts of complete protein and prebiotic fibers found in edible and medicinal fungi and their products are presented. Mushrooms contain the highest amount of valuable medicinal fiber, while dried fruiting bodies of some fungi have up to 80% prebiotic fiber. These fibers are particularly complex and are not broken down in the upper gut, so they can diversify the microbiome and increase the most beneficial species, leading to better immune regulation and increasing normalizing levels of crucial neurotransmitters like serotonin and dopamine. Since the growth of medicinal mushroom products is expanding rapidly worldwide, attention is placed on reviewing important aspects of mushroom and mycelium cultivation and quality issues relating to adulteration, substitution, and purity and for maximizing medicinal potency. Common questions surrounding medicinal mushroom products in the marketplace, particularly the healing potential of fungal mycelium compared with fruiting bodies, extraction methods, and the use of fillers in products, are all explored, and many points are supported by the literature.
Assuntos
Agaricales , Produtos Biológicos , Humanos , Produtos Biológicos/farmacologiaRESUMO
Nonviral vectors offer a safe alternative to viral vectors for gene therapy applications, albeit typically exhibiting lower transfection efficiencies. As a result, there remains a significant need for the development of a nonviral delivery system with low cytotoxicity and high transfection efficacy as a tool for safe and transient gene delivery. This study assesses MgAl-NO3 layered double hydroxide (LDH) as a nonviral vector to deliver nucleic acids (pDNA, miRNA and siRNA) to mesenchymal stromal cells (MSCs) in 2D culture and using a 3D tissue engineering scaffold approach. Nanoparticles were formulated by complexing LDH with pDNA, microRNA (miRNA) mimics and inhibitors, and siRNA at varying mass ratios of LDH:nucleic acid. In 2D monolayer, pDNA delivery demonstrated significant cytotoxicity issues, and low cellular transfection was deemed to be a result of the poor physicochemical properties of the LDH-pDNA nanoparticles. However, the lower mass ratios required to successfully complex with miRNA and siRNA cargo allowed for efficient delivery to MSCs. Furthermore, incorporation of LDH-miRNA nanoparticles into collagen-nanohydroxyapatite scaffolds resulted in successful overexpression of miRNA in MSCs, demonstrating the development of an efficacious miRNA delivery platform for gene therapy applications in regenerative medicine.
RESUMO
This communication describes our recent efforts to utilize Wittig olefination reactions for the post-polymerization modification of polynorbornene derivatives prepared through ring opening metathesis polymerization (ROMP). Polymerizing α-bromo ester-containing norbornenes provides polymers that can undergo facile substitution with triphenylphosphine. The resulting polymeric phosphonium salt is then deprotonated to form an ylide that undergoes reaction with various aryl aldehydes in a one-pot fashion to yield the respective cinnamates. These materials can undergo further modification through photo-induced [2 + 2] cycloaddition cross-linking reactions.
RESUMO
Cyclodextrins, which are glucose-based cyclic oligosaccharides, are materials that can act inherently as chiral selectors, with many reports of the application of cyclodextrins in enantioseparation. However, many studies have encountered the problem of insufficient enantioselective performance of the chiral selector. One of the main reasons is due to low surface concertation's, whereby interaction between the chiral selector and analyte usually occurs at a surface. Thus, scientists have been trying for the last two decades to overcome this problem, with the incorporation of nanomaterials being promising as they possess a large surface area which allows for the accommodation of a higher concentration of the chiral selectors. Herein, we outline nanomaterial-cyclodextrin conjugates that work in tandem to achieve or enhance enantioselectivity through various methods such as chromatography, adsorption, and removal using magnetic nanoparticles, or enantiorecognition using electrochemical techniques.
RESUMO
Engineering a pro-regenerative immune response following scaffold implantation is integral to functional tissue regeneration. The immune response to implanted biomaterials is determined by multiple factors, including biophysical cues such as material stiffness, topography and particle size. In this study we developed an immune modulating scaffold for bone defect healing containing bone mimetic nano hydroxyapatite particles (BMnP). We first demonstrate that, in contrast to commercially available micron-sized hydroxyapatite particles, in-house generated BMnP preferentially polarize human macrophages towards an M2 phenotype, activate the transcription factor cMaf and specifically enhance production of the anti-inflammatory cytokine, IL-10. Furthermore, nano-particle treated macrophages enhance mesenchymal stem cell (MSC) osteogenesis in vitro and this occurs in an IL-10 dependent manner, demonstrating a direct pro-osteogenic role for this cytokine. BMnPs were also capable of driving pro-angiogenic responses in human macrophages and HUVECs. Characterization of immune cell subsets following incorporation of functionalized scaffolds into a rat femoral defect model revealed a similar profile, with micron-sized hydroxyapatite functionalized scaffolds eliciting pro-inflammatory responses characterized by infiltrating T cells and elevated expression of M1 macrophages markers compared to BMnP functionalized scaffolds which promoted M2 macrophage polarization, tissue vascularization and increased bone volume. Taken together these results demonstrate that nano-sized Hydroxyapatite has immunomodulatory potential and is capable of directing anti-inflammatory innate immune-mediated responses that are associated with tissue repair and regeneration.
Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Regeneração Óssea , Interleucina-10 , Ativação de Macrófagos , Macrófagos , Ratos , Alicerces TeciduaisRESUMO
It would be difficult to imagine how modern life across the globe would operate in the absence of synthetic polymers. Although these materials (mostly in the form of plastics) have revolutionized our daily lives, there are consequences to their use, one of these being their high levels of flammability. For this reason, research into the development of flame retardant (FR) additives for these materials is of tremendous importance. However, many of the FRs prepared are problematic due to their negative impacts on human health and the environment. Furthermore, their preparations are neither green nor sustainable since they require typical organic synthetic processes that rely on fossil fuels. Because of this, the need to develop more sustainable and non-toxic options is vital. Many research groups have turned their attention to preparing new bio-based FR additives for synthetic polymers. This review explores some of the recent examples made in this field.
RESUMO
The bone infection osteomyelitis (typically by Staphylococcus aureus) usually requires a multistep procedure of surgical debridement, long-term systemic high-dose antibiotics, and - for larger defects - bone grafting. This, combined with the alarming rise in antibiotic resistance, necessitates development of alternative approaches. Herein, we describe a one-step treatment for osteomyelitis that combines local, controlled release of non-antibiotic antibacterials with a regenerative collagen-based scaffold. To maximise efficacy, we utilised bioactive glass, an established osteoconductive material with immense capacity for bone repair, as a delivery platform for copper ions (proven antibacterial, angiogenic, and osteogenic properties). Multifunctional collagen-copper-doped bioactive glass scaffolds (CuBG-CS) were fabricated with favourable microarchitectural and mechanical properties (up to 1.9-fold increase in compressive modulus over CS) within the ideal range for bone tissue engineering. Scaffolds demonstrated antibacterial activity against Staphylococcus aureus (up to 66% inhibition) whilst also enhancing osteogenesis (up to 3.6-fold increase in calcium deposition) and angiogenesis in vitro. Most significantly, when assessed in a chick embryo in vivo model, CuBG-CS not only demonstrated biocompatibility, but also a significant angiogenic and osteogenic response, consistent with in vitro studies. Collectively, these results indicate that the CuBG-CS developed here show potential as a one-step osteomyelitis treatment: reducing infection, whilst enhancing bone healing.
Assuntos
Indutores da Angiogênese/administração & dosagem , Antibacterianos/administração & dosagem , Colágeno/química , Cobre/administração & dosagem , Osteogênese/efeitos dos fármacos , Alicerces Teciduais/química , Indutores da Angiogênese/farmacologia , Animais , Antibacterianos/farmacologia , Materiais Biocompatíveis/química , Linhagem Celular , Embrião de Galinha , Cobre/farmacologia , Sistemas de Liberação de Medicamentos , Vidro/química , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacosRESUMO
This paper describes the wet-chemistry synthesis of highly crystalline hexagonal flakes of Ni-Fe layered double hydroxide (LDH) produced at temperature as low as 100 °C. The flakes with diameter in the range of 0.5-1.5 µm and the thickness between 15 and 20 nm were obtained by homogeneous precipitation method with the use of triethanolamine (TEA) and urea. By analyzing the intermediate products, it is suggested that, differently from previous reports, a thermodynamically metastable iron oxyhydroxide and Ni-TEA complex are firstly formed at room temperature. Subsequently, when the mixture is heated to 100 °C and the pH increases due to the thermal decomposition of urea, Ni2+ and Fe3+ are slowly released and then recombine, thus leading to formation of pure, highly-crystalline Ni-Fe LDH flakes. This material showed promising results as an electrocatalyst in oxygen evolution reaction (OER) providing an overpotential value of 0.36 V.
RESUMO
Total joint replacements (TJR) are costly procedures required to relieve pain and restore function in patients suffering from end-stage arthritis. Despite great progress in the development and durability of TJRs, the generation of prosthesis-associated wear particles over time leads to an inflammatory cascade which culminates in periprosthetic osteolysis. Studies suggest that wear particles drive the polarization/differentiation of immature macrophages towards a pro-inflammatory M1 phenotype rather than an anti-inflammatory M2 phenotype associated with normal bone and wound healing. This, in turn, contributes to the initiation of peri-implant inflammation. As a result, modulating M1 macrophage cytokine production has been recognised as a viable therapeutic option. The aim of this study was to examine the impact of hydroxyapatite (HA) and poly(methyl methacrylate) (PMMA) particles on human macrophage polarization by comparing their effect on M1/M2-associated gene expression using real-time PCR. Furthermore, using immunoblotting to assess kinase activation, we sought to identify the intracellular signalling molecules activated by PMMA/HA particles and to determine whether pharmacological blockade of these molecules impacts on macrophage phenotype and cytokine production as measured by ELISA. We report that wear particles preferentially polarize macrophages towards an M1 phenotype, an effect that is dependent on activation of the membrane proximal kinase, Syk and members of the mitogen-activated protein kinase (MAPK) family of signalling molecules. Pre-treatment of macrophages with Syk inhibitors (R788/piceatannol) or MAPK inhibitors (SB203580 and PD98059), not only prevents M1 polarization, but also attenuates production of key pro-inflammatory mediators that have been specifically implicated in periprosthetic osteolysis and osteoclast differentiation. STATEMENT OF SIGNIFICANCE: It is now well established that wear-debris particles from implanted materials drive deleterious inflammatory responses which can eventually lead to implant loosening. In this study, we provide further insight into the specific cellular pathways activated by wear particles in primary human immune cells. We demonstrate that PMMA bone cement and hydroxyapatite, a commonly used biomaterial, drive the polarization of macrophages towards an inflammatory phenotype and identify the specific signalling molecules that are activated in this process. Pre-treatment of macrophages with pharmacological inhibitors of these molecules in turn prevents macrophage polarization and dampens inflammatory cytokine production. Hence these signalling molecules represent potential therapeutic targets to treat or possibly prevent particulate induced osteolysis.
Assuntos
Polaridade Celular , Prótese Articular , Macrófagos/citologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Tirosina Quinases/metabolismo , Baço/enzimologia , Animais , Materiais Biocompatíveis/química , Durapatita/química , Humanos , Osteoartrite/patologia , Osteoartrite/cirurgia , Osteólise , Polimetil Metacrilato/química , Falha de Prótese , Reação em Cadeia da Polimerase em Tempo RealRESUMO
The novel self-assembling bottlebrush polyethylene glycol-polynorbornene-thiocresol block copolymers (PEG-PNB-TC) were synthesized by the ring opening metathesis polymerization (ROMP), followed by functionalization of the polymer backbone via the thio-bromo "click" postpolymerization strategy. The PEG-PNB-TC copolymers could easily self-assemble into the nanoscale core-shell polymeric micelles. The hydrophobic anticancer drugs, such as paclitaxel (PTX), could be loaded into their hydrophobic core to form a stable drug-loaded micelle with a superior drug loading capacity of up to â¼35% (w/w). The sustained drug release behavior of the PEG-PNB-TC micelles was observed under a simulated "sink condition". Compared with commercial PTX formulation (Taxol), the PTX-loaded PEG-PNB-TC micelles showed the enhanced in vitro cellular uptake and comparable cytotoxicity in the drug-sensitive cancer cells, while the copolymers were much safer than Cremophor EL, the surfactant used in Taxol. Furthermore, curcumin (CUR), a natural chemotherapy drug sensitizer, was successfully coloaded with PTX into the PEG-PNB-TC micelles. High drug loading capacity of the PEG-PNB-TC micelles allowed for easy adjustment of drug doses and the ratio of the coloaded drugs. The combination of PTX and CUR showed synergistic anticancer effect in both the drug mixture and drug coloaded micelles at high CUR/PTX ratio, while low CRU/PTX ratio only exhibited additive effects. The combinatorial effects remarkably circumvented the PTX resistance in the multidrug resistant (MDR) cancer cells. Due to the easy polymerization and functionalization, excellent self-assembly capability, high drug loading capability, and great stability, the PEG-PNB-TC copolymers might be a promising nanomaterial for delivery of the hydrophobic anticancer drugs, especially for combination drug therapy.
Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Micelas , Paclitaxel/farmacologia , Polímeros/química , Células A549 , Antineoplásicos/administração & dosagem , Cromatografia Líquida de Alta Pressão , Curcumina/administração & dosagem , Células HeLa , Humanos , Paclitaxel/administração & dosagem , Plásticos/químicaRESUMO
Natural selection in photosynthesis has engineered tetrapyrrole based, nanometer scale, light harvesting and energy capture in light-induced charge separation. By designing and creating nanometer scale artificial light harvesting and charge separating proteins, we have the opportunity to reengineer and overcome the limitations of natural selection to extend energy capture to new wavelengths and to tailor efficient systems that better meet human as opposed to cellular energetic needs. While tetrapyrrole cofactor incorporation in natural proteins is complex and often assisted by accessory proteins for cofactor transport and insertion, artificial protein functionalization relies on a practical understanding of the basic physical chemistry of protein and cofactors that drive nanometer scale self-assembly. Patterning and balancing of hydrophobic and hydrophilic tetrapyrrole substituents is critical to avoid natural or synthetic porphyrin and chlorin aggregation in aqueous media and speed cofactor partitioning into the non-polar core of a man-made water soluble protein designed according to elementary first principles of protein folding. This partitioning is followed by site-specific anchoring of tetrapyrroles to histidine ligands strategically placed for design control of rates and efficiencies of light energy and electron transfer while orienting at least one polar group towards the aqueous phase.
RESUMO
Ultrasound (US) imaging deals with forming a brightness image from the amplified backscatter echo when an ultrasound wave is triggered at the region of interest. Imaging artifacts and speckles occur in the image as a consequence of backscattering and subsequent amplification. We demonstrate the usefulness of speckle-related pixels and imaging artifacts as sources of information to perform multiorgan segmentation in US images of the thyroid gland. The speckle-related pixels are clustered based on a similarity constraint to quantize the image. The quantization results are used to locate useful anatomical landmarks that aid the detection of multiple organs in the image, which are the thyroid gland, the carotid artery, the muscles, and the trachea. The spatial locations of the carotid artery and the trachea are used to estimate the boundaries of the thyroid gland in transverse US scans. Experiments performed on a multivendor dataset yield good quality segmentation results with probabilistic Rand index > 0.83 and boundary error 1 mm, and an average accuracy greater than 94%. Analysis of the results using the Dice coefficient as the metric shows that the proposed method performs better than the state-of-the-art methods. Further, experiments conducted on 971 images of a publicly available dataset prove the effectiveness of the algorithm to track the carotid artery for guided interventions. In addition to US-guided interventions, the algorithm can be used as a general framework in applications pertaining to volumetric analysis and computer-aided diagnosis.
Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Glândula Tireoide/diagnóstico por imagem , Ultrassonografia/métodos , Algoritmos , Humanos , Glândula Tireoide/patologiaRESUMO
BACKGROUND: Many gram-negative bacteria use type III secretion systems (T3SSs) to translocate effector proteins into host cells. T3SS effectors can give some bacteria a competitive edge over others within the same environment and can help bacteria to invade the host cells and allow them to multiply rapidly within the host. Therefore, developing efficient methods to identify effectors scattered in bacterial genomes can lead to a better understanding of host-pathogen interactions and ultimately to important medical and biotechnological applications. RESULTS: We used 21 genomic and proteomic attributes to create a precise and reliable T3SS effector prediction method called Genome Search for Effectors Tool (GenSET). Five machine learning algorithms were trained on effectors selected from different organisms and a trained (voting) algorithm was then applied to identify other effectors present in the genome testing sets from the same (GenSET Phase 1) or different (GenSET Phase 2) organism. Although a select group of attributes that included the codon adaptation index, probability of expression in inclusion bodies, N-terminal disorder, and G + C content (filtered) were better at discriminating between positive and negative sets, algorithm performance was better when all 21 attributes (unfiltered) were used. Performance scores (sensitivity, specificity and area under the curve) from GenSET Phase 1 were better than those reported for six published methods. More importantly, GenSET Phase 1 ranked more known effectors (70.3%) in the top 40 ranked proteins and predicted 10-80% more effectors than three available programs in three of the four organisms tested. GenSET Phase 2 predicted 43.8% effectors in the top 40 ranked proteins when tested on four related or unrelated organisms. The lower prediction rates from GenSET Phase 2 may be due to the presence of different translocation signals in effectors from different T3SS families. CONCLUSIONS: The species-specific GenSET Phase 1 method offers an alternative approach to T3SS effector prediction that can be used with other published programs to improve effector predictions. Additionally, our approach can be applied to predict effectors of other secretion systems as long as these effectors have translocation signals embedded in their sequences.
Assuntos
Biologia Computacional , Genoma Bacteriano , Genômica , Sistemas de Secreção Tipo III , Algoritmos , Composição de Bases , Biologia Computacional/métodos , Genômica/métodos , Bactérias Gram-Negativas/genética , Reprodutibilidade dos TestesRESUMO
BACKGROUND: A typical affinity purification coupled to mass spectrometry (AP-MS) experiment includes the purification of a target protein (bait) using an antibody and subsequent mass spectrometry analysis of all proteins co-purifying with the bait (aka prey proteins). Like any other systems biology approach, AP-MS experiments generate a lot of data and visualization has been challenging, especially when integrating AP-MS experiments with orthogonal datasets. RESULTS: We present Circular Interaction Graph for Proteomics (CIG-P), which generates circular diagrams for visually appealing final representation of AP-MS data. Through a Java based GUI, the user inputs experimental and reference data as file in csv format. The resulting circular representation can be manipulated live within the GUI before exporting the diagram as vector graphic in pdf format. The strength of CIG-P is the ability to integrate orthogonal datasets with each other, e.g. affinity purification data of kinase PRPF4B in relation to the functional components of the spliceosome. Further, various AP-MS experiments can be compared to each other. CONCLUSIONS: CIG-P aids to present AP-MS data to a wider audience and we envision that the tool finds other applications too, e.g. kinase - substrate relationships as a function of perturbation. CIG-P is available under: http://sourceforge.net/projects/cig-p/
Assuntos
Espectrometria de Massas/métodos , Mapeamento de Interação de Proteínas/métodos , Proteínas Quinases/metabolismo , Proteômica/métodos , Cromatografia de Afinidade/métodos , Gráficos por Computador , HumanosRESUMO
BACKGROUND: There is uncertainty about the nature and specificity of physical signs following anal child sexual abuse. The study investigates the extent to which physical findings discriminate between children with and without a history of anal abuse. METHODS: Retrospective case note review in a paediatric forensic unit. CASES: all eligible cases from 1990 to 2007 alleging anal abuse. CONTROLS: all children examined anally from 1998 to 2007 with possible physical abuse or neglect with no identified concern regarding sexual abuse. Fisher's exact test (two-tailed) was performed to ascertain the significance of differences for individual signs between cases and controls. To explore the potential role of confounding, logistic regression was used to produce odds ratios adjusted for age and gender. RESULTS: A total of 184 cases (105 boys, 79 girls), average age 98.5 months (range 26 to 179) were compared with 179 controls (94 boys, 85 girls) average age 83.7 months (range 35-193). Of the cases 136 (74%) had one or more signs described in anal abuse, compared to 29 (16%) controls. 79 (43%) cases and 2 (1.1%) controls had >1 sign. Reflex anal dilatation (RAD) and venous congestion were seen in 22% and 36% of cases but <1% of controls (likelihood ratios (LR) 40, 60 respectively), anal fissure in 14% cases and 1.1% controls (LR 13), anal laxity in 27% cases and 3% controls (LR 10).Novel signs seen significantly more commonly in cases were anal fold changes, swelling and twitching. Erythema, swelling and fold changes were seen most commonly within 7 days of last reported contact; RAD, laxity, venous congestion, fissure and twitching were observed up to 6 months after the alleged assault. CONCLUSIONS: Anal findings are more common in children alleging anal abuse than in those presenting with physical abuse or neglect with no concern about sexual abuse. Multiple signs are rare in controls and support disclosed anal abuse.
Assuntos
Canal Anal/lesões , Canal Anal/patologia , Abuso Sexual na Infância/diagnóstico , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Dilatação Patológica , Inglaterra , Eritema/patologia , Feminino , Fissura Anal/patologia , Medicina Legal , Humanos , Hiperemia/patologia , Masculino , Exame Físico , Reflexo Anormal , Estudos RetrospectivosRESUMO
Manually induced artefacts, like caliper marks and anatomical labels, render an ultrasound (US) image incapable of being subjected to further processes of Computer Aided Diagnosis (CAD). In this paper, we propose a technique to remove these artefacts and restore the image as accurately as possible. The technique finds application as a pre-processing step when developing unsupervised segmentation algorithms for US images that deal with automatic estimation of the number of segments and clustering. The novelty of the algorithm lies in the image processing pipeline chosen to automatically identify the artefacts and is developed based on the histogram properties of the artefacts. The algorithm was able to successfully restore the images to a high quality when it was executed on a dataset of 18 US images of the thyroid gland on which the artefacts were induced manually by a doctor. Further experiments on an additional dataset of 10 unmarked US images of the thyroid gland on which the artefacts were simulated using Matlab showed that the restored images were again of high quality with a PSNR > 38 dB and free of any manually induced artefacts.
Assuntos
Artefatos , Automação , Processamento de Imagem Assistida por Computador/métodos , Glândula Tireoide/diagnóstico por imagem , Ultrassom , Algoritmos , Análise por Conglomerados , Humanos , Ultrassonografia , VíscerasRESUMO
A series of dipeptide derivatives of L-dopa were synthesized and investigated for their pharmacological activity using the unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rat as an experimental model of Parkinson's disease. Among them, (S)-isopropyl 2-(2-amino-2-methylpropanamido)-3-(3,4-dihydroxyphenyl)propanoate (4 g) was found to be the most active compound, with 106% AUC activity and 149% peak activity of L-dopa after oral administration.