Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Struct Mol Biol ; 30(8): 1207-1215, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37202476

RESUMO

In mammals, X-chromosomal genes are expressed from a single copy since males (XY) possess a single X chromosome, while females (XX) undergo X inactivation. To compensate for this reduction in dosage compared with two active copies of autosomes, it has been proposed that genes from the active X chromosome exhibit dosage compensation. However, the existence and mechanisms of X-to-autosome dosage compensation are still under debate. Here we show that X-chromosomal transcripts have fewer m6A modifications and are more stable than their autosomal counterparts. Acute depletion of m6A selectively stabilizes autosomal transcripts, resulting in perturbed dosage compensation in mouse embryonic stem cells. We propose that higher stability of X-chromosomal transcripts is directed by lower levels of m6A, indicating that mammalian dosage compensation is partly regulated by epitranscriptomic RNA modifications.


Assuntos
Mecanismo Genético de Compensação de Dose , Cromossomo X , Masculino , Feminino , Animais , Camundongos , Metilação , Cromossomo X/genética , Mamíferos/genética , Estabilidade de RNA
3.
Nucleic Acids Res ; 49(16): e92, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34157120

RESUMO

N6-methyladenosine (m6A) is the most abundant internal RNA modification in eukaryotic mRNAs and influences many aspects of RNA processing. miCLIP (m6A individual-nucleotide resolution UV crosslinking and immunoprecipitation) is an antibody-based approach to map m6A sites with single-nucleotide resolution. However, due to broad antibody reactivity, reliable identification of m6A sites from miCLIP data remains challenging. Here, we present miCLIP2 in combination with machine learning to significantly improve m6A detection. The optimized miCLIP2 results in high-complexity libraries from less input material. Importantly, we established a robust computational pipeline to tackle the inherent issue of false positives in antibody-based m6A detection. The analyses were calibrated with Mettl3 knockout cells to learn the characteristics of m6A deposition, including m6A sites outside of DRACH motifs. To make our results universally applicable, we trained a machine learning model, m6Aboost, based on the experimental and RNA sequence features. Importantly, m6Aboost allows prediction of genuine m6A sites in miCLIP2 data without filtering for DRACH motifs or the need for Mettl3 depletion. Using m6Aboost, we identify thousands of high-confidence m6A sites in different murine and human cell lines, which provide a rich resource for future analysis. Collectively, our combined experimental and computational methodology greatly improves m6A identification.


Assuntos
Adenosina/análogos & derivados , Aprendizado de Máquina , Processamento Pós-Transcricional do RNA , RNA-Seq/métodos , Adenosina/química , Adenosina/metabolismo , Animais , Células HEK293 , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Motivos de Nucleotídeos , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA-Seq/normas , Sensibilidade e Especificidade
4.
Neurochem Res ; 45(3): 566-579, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30843138

RESUMO

The formation of myelin around axons by oligodendrocytes (OL) poses an enormous synthetic and energy challenge for the glial cell. Local translation of transcripts, including the mRNA for the essential myelin protein Myelin Basic Protein (MBP) at the site of myelin deposition has been recognised as an efficient mechanism to assure proper myelin sheath assembly. Oligodendroglial precursor cells (OPCs) form synapses with neurons and may localise many additional mRNAs in a similar fashion to synapses between neurons. In some diseases in which demyelination occurs, an abundance of OPCs is present but there is a failure to efficiently remyelinate and to synthesise MBP. This compromises axonal survival and function. OPCs are especially sensitive to cellular stress as occurring in neurodegenerative diseases, which can impinge on their ability to translate mRNAs into protein. Stress causes the build up of cytoplasmic stress granules (SG) in which many RNAs are sequestered and translationally stalled until the stress ceases. Chronic stress in particular could convert this initially protective reaction of the cell into damage, as persistence of SG may lead to pathological aggregate formation or long-term translation block of SG-associated RNAs. The recent recognition that many neurodegenerative diseases often exhibit an early white matter pathology with a proliferation of surviving OPCs, renders a study of the stress-associated processes in oligodendrocytes and OPCs especially relevant. Here, we discuss a potential dysfunction of RNA regulation in myelin diseases such as Multiple Sclerosis (MS) and Vanishing white matter disease (VWM) and potential contributions of OL dysfunction to neurodegenerative diseases such as Amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and Fragile X syndrome (FXS).


Assuntos
Doenças Neurodegenerativas/etiologia , Neuroglia/patologia , Oligodendroglia/patologia , RNA/genética , Animais , Diferenciação Celular , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neuroglia/metabolismo , Oligodendroglia/metabolismo
5.
J Cell Sci ; 131(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29622601

RESUMO

In the central nervous system, oligodendroglial expression of myelin basic protein (MBP) is crucial for the assembly and structure of the myelin sheath. MBP synthesis is tightly regulated in space and time, particularly at the post-transcriptional level. We have identified the DEAD-box RNA helicase DDX5 (also known as p68) in a complex with Mbp mRNA in oligodendroglial cells. Expression of DDX5 is highest in progenitor cells and immature oligodendrocytes, where it localizes to heterogeneous populations of cytoplasmic ribonucleoprotein (RNP) complexes associated with Mbp mRNA in the cell body and processes. Manipulation of the amount of DDX5 protein inversely affects the level of MBP. We present evidence that DDX5 is involved in post-transcriptional regulation of MBP protein synthesis, with implications for oligodendroglial development. In addition, knockdown of DDX5 results in an increased abundance of MBP isoforms containing exon 2 in immature oligodendrocytes, most likely by regulating alternative splicing of Mbp Our findings contribute to the understanding of the complex nature of MBP post-transcriptional control in immature oligodendrocytes where DDX5 appears to affect the abundance of MBP proteins via distinct but converging mechanisms.


Assuntos
RNA Helicases DEAD-box/metabolismo , Proteína Básica da Mielina/metabolismo , Oligodendroglia/metabolismo , Animais , Citoplasma/metabolismo , RNA Helicases DEAD-box/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteína Básica da Mielina/biossíntese , Proteína Básica da Mielina/genética , Processamento Pós-Transcricional do RNA
6.
PLoS One ; 9(2): e89423, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586768

RESUMO

Oligodendrocytes are the myelinating glial cells of the central nervous system. In the course of brain development, oligodendrocyte precursor cells migrate, scan the environment and differentiate into mature oligodendrocytes with multiple cellular processes which recognize and ensheath neuronal axons. During differentiation, oligodendrocytes undergo dramatic morphological changes requiring cytoskeletal rearrangements which need to be tightly regulated. The non-receptor tyrosine kinase Fyn plays a central role in oligodendrocyte differentiation and myelination. In order to improve our understanding of the role of oligodendroglial Fyn kinase, we have identified Fyn targets in these cells. Purification and mass-spectrometric analysis of tyrosine-phosphorylated proteins in response to overexpressed active Fyn in the oligodendrocyte precursor cell line Oli-neu, yielded the adaptor molecule p130Cas. We analyzed the function of this Fyn target in oligodendroglial cells and observed that reduction of p130Cas levels by siRNA affects process outgrowth, the thickness of cellular processes and migration behavior of Oli-neu cells. Furthermore, long term p130Cas reduction results in decreased cell numbers as a result of increased apoptosis in cultured primary oligodendrocytes. Our data contribute to understanding the molecular events taking place during oligodendrocyte migration and morphological differentiation and have implications for myelin formation.


Assuntos
Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Proteína Substrato Associada a Crk/metabolismo , Oligodendroglia/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Animais , Axônios/metabolismo , Células Cultivadas , Camundongos , Oligodendroglia/citologia , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA