Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(8)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39205162

RESUMO

Enteroviruses are RNA viruses that initiate infections through the gastrointestinal (GI) tract and are associated with enteric illness in individuals of all ages. Most serious infections of enteroviruses are in infants and young children where it is the common cause of aseptic meningitis and other systemic diseases, leading to a high mortality rate. Enteroviruses belong to the small non-enveloped family of the Picornaviridae family. The virus can spread mainly through fecal-oral and respiratory routes. In the Arabian Gulf countries, the incidence of enteroviral infections is only restricted to a few reports, and thus, knowledge of the epidemiology, characteristics, and pathogenesis of the virus in the gulf countries remains scarce. In this minireview, we sought to provide an overview of the characteristics of enterovirus and its pathogenesis, in addition to gathering the reports of enterovirus infection prevalence in Gulf Cooperation Council (GCC) countries. We also present a summary of the common methods used in its detection.


Assuntos
Infecções por Enterovirus , Enterovirus , Humanos , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/virologia , Enterovirus/genética , Enterovirus/classificação , Enterovirus/isolamento & purificação , Prevalência , Oriente Médio/epidemiologia
2.
Bio Protoc ; 13(17): e4800, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37719078

RESUMO

Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ signaling modality mediated by Orai Ca2+ channels at the plasma membrane (PM) and the endoplasmic reticulum (ER) Ca2+ sensors STIM1/2. At steady state, Orai1 constitutively cycles between an intracellular compartment and the PM. Orai1 PM residency is modulated by its endocytosis and exocytosis rates. Therefore, Orai1 trafficking represents an important regulatory mechanism to define the levels of Ca2+ influx. Here, we present a protocol using the dually tagged YFP-HA-Orai1 with a cytosolic YFP and extracellular hemagglutinin (HA) tag to quantify Orai1 cycling rates. For measuring Orai1 endocytosis, cells expressing YFP-HA-Orai1 are incubated with mouse anti-HA antibody for various periods of time before being fixed and stained for surface Orai1 with Cy5-labeled anti-mouse IgG. The cells are fixed again, permeabilized, and stained with Cy3-labeled anti-mouse IgG to reveal anti-HA that has been internalized. To quantify Orai1 exocytosis rate, cells are incubated with anti-HA antibody for various incubation periods before being fixed, permeabilized, and then stained with Cy5-labeled anti-mouse IgG. The Cy5/YFP ratio is plotted over time and fitted with a mono-exponential growth curve to determine exocytosis rate. Although the described assays were developed to measure Orai1 trafficking, they are readily adaptable to other PM channels. Key features Detailed protocols to quantify endocytosis and exocytosis rates of Orai1 at the plasma membrane that can be used in various cell lines. The endocytosis and exocytosis assays are readily adaptable to study the trafficking of other plasma membrane channels.

3.
Biomedicines ; 11(8)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37626757

RESUMO

INTRODUCTION: Biogenic amines play important roles throughout cellular metabolism. This study explores a role of biogenic amines in glioblastoma pathogenesis. Here, we characterize the plasma levels of biogenic amines in glioblastoma patients undergoing standard-of-care treatment. METHODS: We examined 138 plasma samples from 36 patients with isocitrate dehydrogenase (IDH) wild-type glioblastoma at multiple stages of treatment. Untargeted gas chromatography-time of flight mass spectrometry (GC-TOF MS) was used to measure metabolite levels. Machine learning approaches were then used to develop a predictive tool based on these datasets. RESULTS: Surgery was associated with increased levels of 12 metabolites and decreased levels of 11 metabolites. Chemoradiation was associated with increased levels of three metabolites and decreased levels of three other metabolites. Ensemble learning models, specifically random forest (RF) and AdaBoost (AB), accurately classified treatment phases with high accuracy (RF: 0.81 ± 0.04, AB: 0.78 ± 0.05). The metabolites sorbitol and N-methylisoleucine were identified as important predictive features and confirmed via SHAP. CONCLUSION: To our knowledge, this is the first study to describe plasma biogenic amine signatures throughout the treatment of patients with glioblastoma. A larger study is needed to confirm these results with hopes of developing a diagnostic algorithm.

4.
Mol Cell Biochem ; 2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37634170

RESUMO

The sodium-potassium pump (NKA) or Na+/K+ ATPase consumes around 30-40% of the total energy expenditure of the animal cell on the generation of the sodium and potassium electrochemical gradients that regulate various electrolyte and nutrient transport processes. The vital role of this protein entails proper spatial and temporal regulation of its activity through modulatory mechanisms involving its expression, localization, enzymatic activity, and protein-protein interactions. The residence of the NKA at the plasma membrane is compulsory for its action as an antiporter. Despite the huge body of literature reporting on its trafficking between the cell membrane and intracellular compartments, the mechanisms controlling the trafficking process are by far the least understood. Among the molecular determinants of the plasma membrane proteins trafficking are intrinsic sequence-based endocytic motifs. In this review, we (i) summarize previous reports linking the regulation of Na+/K+ ATPase trafficking and/or plasma membrane residence to its activity, with particular emphasis on the endocytic signals in the Na+/K+ ATPase alpha-subunit, (ii) map additional potential internalization signals within Na+/K+ ATPase catalytic alpha-subunit, based on canonical and noncanonical endocytic motifs reported in the literature, (iii) pinpoint known and potential phosphorylation sites associated with NKA trafficking, (iv) highlight our recent studies on Na+/K+ ATPase trafficking and PGE2-mediated Na+/K+ ATPase modulation in intestine, liver, and kidney cells.

5.
Inflammopharmacology ; 31(4): 2049-2060, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37204695

RESUMO

Cyclosporine A (CsA) is an immunosuppressant primarily used at a higher dosage in transplant medicine and autoimmune diseases with a higher success rate. At lower doses, CsA exhibits immunomodulatory properties. CsA has also been reported to inhibit breast cancer cell growth by downregulating the expression of pyruvate kinase. However, differential dose-response effects of CsA in cell growth, colonization, apoptosis, and autophagy remain largely unidentified in breast cancer cells. Herein, we showed the cell growth-inhibiting effects of CsA by preventing cell colonization and enhancing DNA damage and apoptotic index at a relatively lower concentration of 2 µM in MCF-7 breast cancer cells. However, at a higher concentration of 20 µM, CsA leads to differential expression of autophagy-related genes ATG1, ATG8, and ATG9 and apoptosis-associated markers, such as Bcl-2, Bcl-XL, Bad, and Bax, indicating a dose-response effect on differential cell death mechanisms in MCF-7 cells. This was confirmed in the protein-protein interaction network of COX-2 (PTGS2), a prime target of CsA, which had close interactions with Bcl-2, p53, EGFR, and STAT3. Furthermore, we investigated the combined effect of CsA with SHP2/PI3K-AKT inhibitors showing significant MCF-7 cell growth reduction, suggesting its potential to use as an adjuvant during breast cancer therapy.


Assuntos
Neoplasias da Mama , Ciclosporina , Humanos , Feminino , Células MCF-7 , Ciclosporina/farmacologia , Ciclosporina/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Autofagia
6.
Metabolites ; 13(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36837918

RESUMO

We here characterize changes in metabolite patterns in glioblastoma patients undergoing surgery and concurrent chemoradiation using machine learning (ML) algorithms to characterize metabolic changes during different stages of the treatment protocol. We examined 105 plasma specimens (before surgery, 2 days after surgical resection, before starting concurrent chemoradiation, and immediately after chemoradiation) from 36 patients with isocitrate dehydrogenase (IDH) wildtype glioblastoma. Untargeted GC-TOF mass spectrometry-based metabolomics was used given its superiority in identifying and quantitating small metabolites; this yielded 157 structurally identified metabolites. Using Multinomial Logistic Regression (MLR) and GradientBoostingClassifier (GB Classifier), ML models classified specimens based on metabolic changes. The classification performance of these models was evaluated using performance metrics and area under the curve (AUC) scores. Comparing post-radiation to pre-radiation showed increased levels of 15 metabolites: glycine, serine, threonine, oxoproline, 6-deoxyglucose, gluconic acid, glycerol-alpha-phosphate, ethanolamine, propyleneglycol, triethanolamine, xylitol, succinic acid, arachidonic acid, linoleic acid, and fumaric acid. After chemoradiation, a significant decrease was detected in 3-aminopiperidine 2,6-dione. An MLR classification of the treatment phases was performed with 78% accuracy and 75% precision (AUC = 0.89). The alternative GB Classifier algorithm achieved 75% accuracy and 77% precision (AUC = 0.91). Finally, we investigated specific patterns for metabolite changes in highly correlated metabolites. We identified metabolites with characteristic changing patterns between pre-surgery and post-surgery and post-radiation samples. To the best of our knowledge, this is the first study to describe blood metabolic signatures using ML algorithms during different treatment phases in patients with glioblastoma. A larger study is needed to validate the results and the potential application of this algorithm for the characterization of treatment responses.

7.
J Appl Toxicol ; 43(2): 220-229, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35946054

RESUMO

FTY720P, an analogue of sphingosine 1-phosphate, has emerged lately as a potential causative agent of inflammatory bowel disease, in which electrolytes movements driven by the sodium gradient established by the Na+ /K+ ATPase are altered. We showed previously in Caco-2 cells, a 50% FTY720P-induced decrease in the ATPase activity, mediated via S1PR2 and PGE2. This work aims at delineating the mechanism underlying PGE2 release and at investigating if the ATPase inhibition is due to changes in its abundance. The activity of the ATPase and the localization of a GFP-tagged Na+ /K+ -ATPase α1 -subunit were assessed in cells treated with 7.5 nM FTY720P. The involvement of ERK, p38 MAPK, PKC, and PI3K was studied in cells treated with 7.5 nM FTY720P or 1 nM PGE2 in presence of their inhibitors, or by determining changes in the protein expression of their activated phosphorylated forms. Imaging data showed ∼30% reduction in the GFP-tagged Na+ /K+ ATPase at the plasma membrane. Both FTY720P and PGE2 showed, respectively, 50% and 60% reduction in ATPase activity that disappeared when p38 MAPK, PKC, and PI3K were inhibited individually but not with ERK inhibition. The effect of FTY720P was imitated by PMA, an activator of PKC. Western blotting revealed inhibition of ERK by FTY720P. It was concluded that FTY720P, through activation of S1PR2, downregulates the Na+ /K+ ATPase by inhibiting ERK, which in turn activates p38 MAPK leading to the sequential activation of PKC and PI3K, PGE2 release, and a decrease in the Na+ /K+ ATPase activity and membrane abundance.


Assuntos
Proteína Quinase C , Transdução de Sinais , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Células CACO-2 , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Sódio/metabolismo
9.
Biology (Basel) ; 11(12)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36552226

RESUMO

The kidney is susceptible to reactive oxygen species-mediated cellular injury resulting in glomerulosclerosis, tubulointerstitial fibrosis, tubular cell apoptosis, and senescence, leading to renal failure, and is a significant cause of death worldwide. Oxidative stress-mediated inflammation is a key player in the pathophysiology of various renal injuries and diseases. Recently, flavonoids' role in alleviating kidney diseases has been reported with an inverse correlation between dietary flavonoids and kidney injuries. Flavonoids are plant polyphenols possessing several health benefits and are distributed in plants from roots to leaves, flowers, and fruits. Dietary flavonoids have potent antioxidant and free-radical scavenging properties and play essential roles in disease prevention. Flavonoids exert a nephroprotective effect by improving antioxidant status, ameliorating excessive reactive oxygen species (ROS) levels, and reducing oxidative stress, by acting as Nrf2 antioxidant response mediators. Moreover, flavonoids play essential roles in reducing chemical toxicity. Several studies have demonstrated the effects of flavonoids in reducing oxidative stress, preventing DNA damage, reducing inflammatory cytokines, and inhibiting apoptosis-mediated cell death, thereby preventing or improving kidney injuries/diseases. This review covers the recent nephroprotective effects of flavonoids against oxidative stress-mediated inflammation in the kidney and their clinical advancements in renal therapy.

10.
Front Cell Dev Biol ; 10: 980219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211465

RESUMO

A primary reason behind the high level of complexity we embody as multicellular organisms is a highly complex intracellular and intercellular communication system. As a result, the activities of multiple cell types and tissues can be modulated resulting in a specific physiological function. One of the key players in this communication process is extracellular signaling molecules that can act in autocrine, paracrine, and endocrine fashion to regulate distinct physiological responses. Neurotransmitters and neuropeptides are signaling molecules that renders long-range communication possible. In normal conditions, neurotransmitters are involved in normal responses such as development and normal physiological aspects; however, the dysregulation of neurotransmitters mediated signaling has been associated with several pathologies such as neurodegenerative, neurological, psychiatric disorders, and other pathologies. One of the interesting topics that is not yet fully explored is the connection between neuronal signaling and physiological changes during oocyte maturation and fertilization. Knowing the importance of Ca2+ signaling in these reproductive processes, our objective in this review is to highlight the link between the neuronal signals and the intracellular changes in calcium during oocyte maturation and embryogenesis. Calcium (Ca2+) is a ubiquitous intracellular mediator involved in various cellular functions such as releasing neurotransmitters from neurons, contraction of muscle cells, fertilization, and cell differentiation and morphogenesis. The multiple roles played by this ion in mediating signals can be primarily explained by its spatiotemporal dynamics that are kept tightly checked by mechanisms that control its entry through plasma membrane and its storage on intracellular stores. Given the large electrochemical gradient of the ion across the plasma membrane and intracellular stores, signals that can modulate Ca2+ entry channels or Ca2+ receptors in the stores will cause Ca2+ to be elevated in the cytosol and consequently activating downstream Ca2+-responsive proteins resulting in specific cellular responses. This review aims to provide an overview of the reported neurotransmitters and neuropeptides that participate in early stages of development and their association with Ca2+ signaling.

11.
Cell Physiol Biochem ; 56: 484-499, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36126285

RESUMO

BACKGROUND/AIMS: In kidney, extracellular [Ca2+] can modulate intracellular [Ca2+] to control key cellular processes. Hence, extracellular [Ca2+] is normally maintained within narrow range. We tested effect of extracellular ATP on viability of human proximal (HK-2) cells at high calcium. Modulation of intracellular calcium was assessed by imaging cytosolic [Ca2+], and expression of calcium-binding proteins (CaBPs). We present an artificial intelligence enabled deep learning model for prediction of injury and protection against extracellular [Ca2+] in HK-2 cells. METHODS: HK-2 cells were cultured in calcium-free DMEM supplemented with CaCl2. Morphological changes were detected using light microscopy. Cell viability was determined using MTT Assay. Intracellular [Ca2+] was detected using fluorescence microscopy. For easy detection of HK-2 cells injury, we performed light microscopy image classification based on Convolutional Neural Network. Expression of CaBPs, p21, and Mcl-1 was measured using real-time PCR. RESULTS: We show decreased viability of HK-2 cells cultured in elevated calcium levels, which was prevented by adenosine triphosphate (ATP). Exposure of cells to elevated extracellular [Ca2+] correlated with increasing fluorescence of intracellular calcium indicator, which was attenuated in presence of ATP. Since features cannot be detected easily by human eyes, we propose a customized deep learning-based CNN model for classification of HK-2 cells injury by extracellular calcium with high accuracy of 98%. Our data demonstrated significant increase in mRNA levels of calmodulin, S100A8, S100A14 and CaBP28k, with elevated extracellular [Ca2+]. Expression of these genes was enhanced with ATP. CONCLUSION: The results suggest that ATP protects human proximal (HK-2) cells against elevated extracellular calcium levels. We present a CNN model as user friendly tool to study calcium dependent injury in (HK-2) cells. Finally, we show that ATP-mediated protection is correlated with enhanced expression of calcium-binding proteins.


Assuntos
Cálcio , Aprendizado Profundo , Trifosfato de Adenosina/metabolismo , Inteligência Artificial , Cálcio/metabolismo , Cloreto de Cálcio/metabolismo , Calmodulina/metabolismo , Humanos , Rim/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , RNA Mensageiro
12.
Cell Physiol Biochem ; 56(4): 418-435, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36041048

RESUMO

BACKGROUND/AIMS: In renal ischemia, the Na+/K+ ATPase of the kidney epithelial cells translocates to intracellular compartments, resulting in altered kidney functions. Sphingosine-1-phosphate (S1P) was shown to play a protective role against this ischemic injury. Whether the sphingolipid targets the Na+/K+ ATPase is a possibility that has not been explored before. This work aims at investigating the effect of S1P on renal Na+/K+ ATPase using its analogue FTY720P and LLC-PK1 cells. METHODS: The activity of the Na+/K+ ATPase was assayed by measuring the amount of inorganic phosphate liberated in presence and absence of ouabain, a specific inhibitor of the enzyme while its protein expression was studied by western blot analysis. RESULTS: FTY720P increased the activity of the ATPase in a dose and time dependent manner, with a highest effect observed at 15 minutes and a dose of 80 nM. The protein expression was also increased. The stimulation of the Na+/K+ ATPase disappeared completely in presence of JTE-013, a specific blocker of S1PR2, as well as in presence of Y-27632, a Rho kinase inhibitor, BAPTA-AM, a Ca2+ chelator, wortmannin, a PI3K inhibitor, carboxy-PTIO, a scavenger for nitric oxide (NO), and KT 5823, a PKG inhibitor. CYM 5520, a S1PR2 agonist mimicked the effect of FTY720P. FTY720P increased the expression of p-Akt, a direct effector of PI3K, however, this increase disappeared when Rho kinase was inhibited, revealing that Rho kinase acts upstream PI3K. Glyco-SNAP-1, a NO donor, activated the pump in both presence and absence of wortmannin, indicating that PI3K is upstream NO. Interestingly, glyco-SNAP-1 and 8-bromo-cGMP, a PKG activator, exerted no effect on the Na+/K+ ATPase in absence of free Ca2+ revealing that the NO mediated effect is calcium-dependent. The involvement of calcium was further confirmed by the translocation of NFAT to the nucleus. The presence of verapamil or extracellular EGTA abolished the stimulatory effect of FTY720P, indicating that the source of calcium is extracellular. CONCLUSION: The results suggest that FTY720P activates sequentially S1PR2, Rho kinase, PI3K, leading to NO release and PKG stimulation. The latter phosphorylates calcium channels in the cell membrane, leading to calcium influx, and translocation of the ATPase units to the membrane.


Assuntos
Fosfatidilinositol 3-Quinases , Quinases Associadas a rho , Animais , Cálcio/metabolismo , Óxido Nítrico/metabolismo , Organofosfatos , Fosfatidilinositol 3-Quinases/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Esfingosina/análogos & derivados , Suínos , Wortmanina/farmacologia , Quinases Associadas a rho/metabolismo
14.
Heliyon ; 7(1): e06041, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33532651

RESUMO

Cisplatin (CDDP) is currently one of the most effective FDA-approved treatments for breast cancer. Previous studies have shown that CDDP-induced cell death in human breast cancer (MCF-7) cells is associated with disruption of calcium homeostasis. However, whether the sensitivity of breast cancer cells to cisplatin is associated with dysregulation of the expression of calcium-binding proteins (CaBPs) remains unknown. In this study, we evaluated the effect of the intracellular calcium chelator (BAPTA-AM) on viability of MCF-7 cells in the presence of toxic and sub-toxic doses of cisplatin. Furthermore, this study assessed the expression of CaBPs, calmodulin, S100A8, and S100A14 in MCF-7 cells treated with cisplatin. Cell viability was determined using MTT-based in vitro toxicity assay. Intracellular calcium imaging was done using Fluo-4 AM, a cell-permeant fluorescent calcium indicator. Expression of CaBPs was tested using real-time quantitative PCR. Exposure of cells to increasing amounts of CDDP correlated with increasing fluorescence of the intracellular calcium indicator, Fluo-4 AM. Conversely, treating cells with cisplatin significantly decreased mRNA levels of calmodulin, S100A8, and S100A14. Treatment of the cells with calcium chelator, BAPTA-AM, significantly enhanced the cytotoxic effects of sub-toxic dose of cisplatin. Our results indicated a statistically significant negative correlation between calmodulin, S100A8, and S100A14 expression and sensitivity of breast cancer cells to a sub-toxic dose of cisplatin. We propose that modulating the activity of calcium-binding proteins, calmodulin, S100A8, and S100A14, could be used to increase cisplatin efficacy, lowering its treatment dosage while maintaining its chemotherapeutic value.

15.
Sci Rep ; 11(1): 2290, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504898

RESUMO

Regulation of Ca2+ signaling is critical for the progression of cell division, especially during meiosis to prepare the egg for fertilization. The primary Ca2+ influx pathway in oocytes is Store-Operated Ca2+ Entry (SOCE). SOCE is tightly regulated during meiosis, including internalization of the SOCE channel, Orai1. Orai1 is a four-pass membrane protein with cytosolic N- and C-termini. Orai1 internalization requires a caveolin binding motif (CBM) in the N-terminus as well as the C-terminal cytosolic domain. However, the molecular determinant for Orai1 endocytosis in the C-terminus are not known. Here we show that the Orai1 C-terminus modulates Orai1 endocytosis during meiosis through a structural motif that is based on the strength of the C-terminal intersubunit coiled coil (CC) domains. Deletion mutants show that a minimal C-terminal sequence after transmembrane domain 4 (residues 260-275) supports Orai1 internalization. We refer to this region as the C-terminus Internalization Handle (CIH). Access to CIH however is dependent on the strength of the intersubunit CC. Mutants that increase the stability of the coiled coil prevent internalization independent of specific mutation. We further used human and Xenopus Orai isoforms with different propensity to form C-terminal CC and show a strong correlation between the strength of the CC and Orai internalization. Furthermore, Orai1 internalization does not depend on clathrin, flotillin or PIP2. Collectively these results argue that Orai1 internalization requires both the N-terminal CBM and C-terminal CIH where access to CIH is controlled by the strength of intersubunit C-terminal CC.


Assuntos
Meiose/fisiologia , Proteína ORAI1/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio/genética , Sinalização do Cálcio/fisiologia , Caveolina 1/genética , Caveolina 1/metabolismo , Clatrina/genética , Clatrina/metabolismo , Endocitose/genética , Endocitose/fisiologia , Feminino , Meiose/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Confocal , Mutação/genética , Proteína ORAI1/genética , Xenopus laevis , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
16.
PLoS One ; 16(1): e0245400, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33444342

RESUMO

The Na+/K+ ATPase is a key regulator of the hepatocytes ionic homeostasis, which when altered may lead to many liver disorders. We demonstrated recently, a significant stimulation of the Na+/K+ ATPase in HepG2 cells treated with the S1P analogue FTY 720P, that was mediated through PGE2. The mechanism by which the prostaglandin exerts its effect was not investigated, and is the focus of this work. The type of receptors involved was determined using pharmacological inhibitors, while western blot analysis, fluorescence imaging of GFP-tagged Na+/K+ ATPase, and time-lapse imaging on live cells were used to detect changes in membrane abundance of the Na+/K+ ATPase. The activity of the ATPase was assayed by measuring the amount of inorganic phosphate liberated in the presence and absence of ouabain. The enhanced activity of the ATPase was not observed when EP4 receptors were blocked but still appeared in presence inhibitors of EP1, EP2 and EP3 receptors. The involvement of EP4 was confirmed by the stimulation observed with EP4 agonist. The stimulatory effect of PGE2 did not appear in presence of Rp-cAMP, an inhibitor of PKA, and was imitated by db-cAMP, a PKA activator. Chelating intracellular calcium with BAPTA-AM abrogated the effect of db-cAMP as well as that of PGE2, but PGE2 treatment in a calcium-free PBS medium did not, suggesting an involvement of intracellular calcium, that was confirmed by the results obtained with 2-APB treatment. Live cell imaging showed movement of GFP-Na+/K+ ATPase-positive vesicles to the membrane and increased abundance of the ATPase at the membrane after PGE2 treatment. It was concluded that PGE2 acts via EP4, PKA, and intracellular calcium.


Assuntos
Cálcio/metabolismo , Carcinoma Hepatocelular/patologia , Dinoprostona/farmacologia , Neoplasias Hepáticas/patologia , Receptores de Prostaglandina E Subtipo EP4/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Ocitócicos/farmacologia , Proteína Quinase C/metabolismo , Receptores de Prostaglandina E Subtipo EP4/genética , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/genética
17.
Phytother Res ; 35(4): 2185-2199, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33289235

RESUMO

Targeting cell cycle and inducing DNA damage by activating cell death pathways are considered as effective therapeutic strategy for combating breast cancer progression. Many of the naturally known small molecules target these signaling pathways and are effective against resistant and/or aggressive types of breast cancers. Here, we investigated the effect of catechol, a naturally occurring plant compound, for its specificity and chemotherapeutic efficacies in breast cancer (MCF-7 and MDA-MB-231) cells. Catechol treatment showed concentration-dependent cytotoxicity and antiproliferative growth in both MCF-7 and MDA-MB-231 cells while sparing minimal effects on noncancerous (F-180 and HK2) cells. Catechol modulated differential DNA damage effects by activating ATM/ATR pathways and showed enhanced γ-H2AX expression, as an indicator for DNA double-stranded breaks. MCF-7 cells showed G1 cell cycle arrest by regulating p21-mediated cyclin E/Cdk2 inhibition. Furthermore, activation of p53 triggered a caspase-mediated cell death mechanism by inhibiting regulatory proteins such as DNMT1, p-BRCA1, MCL-1, and PDCD6 with an increased Bax/Bcl-2 ratio. Overall, our results showed that catechol possesses favorable safety profile for noncancerous cells while specifically targeting multiple signaling cascades to inhibit proliferation in breast cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Catecóis/uso terapêutico , Dano ao DNA/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Catecóis/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Transdução de Sinais/efeitos dos fármacos
18.
PLoS Biol ; 18(11): e3000901, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33137110

RESUMO

The steroid hormone progesterone (P4) mediates many physiological processes through either nuclear receptors that modulate gene expression or membrane P4 receptors (mPRs) that mediate nongenomic signaling. mPR signaling remains poorly understood. Here we show that the topology of mPRß is similar to adiponectin receptors and opposite to that of G-protein-coupled receptors (GPCRs). Using Xenopus oocyte meiosis as a well-established physiological readout of nongenomic P4 signaling, we demonstrate that mPRß signaling requires the adaptor protein APPL1 and the kinase Akt2. We further show that P4 induces clathrin-dependent endocytosis of mPRß into signaling endosome, where mPR interacts transiently with APPL1 and Akt2 to induce meiosis. Our findings outline the early steps involved in mPR signaling and expand the spectrum of mPR signaling through the multitude of pathways involving APPL1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Progesterona/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Endocitose , Endossomos/metabolismo , Feminino , Meiose/fisiologia , Oócitos/metabolismo , Progesterona/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Proteínas de Xenopus/fisiologia , Xenopus laevis
19.
Cells ; 8(10)2019 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-31546700

RESUMO

Siglecs (Sialic acid-binding immunoglobulin-type lectins) are a I-type lectin that typically binds sialic acid. Siglecs are predominantly expressed in immune cells and generate activating or inhibitory signals. They are also shown to be expressed on the surface of cells in the nervous system and have been shown to play central roles in neuroinflammation. There has been a plethora of reviews outlining the studies pertaining to Siglecs in immune cells. However, this review aims to compile the articles on the role of Siglecs in brain function and neurological disorders. In humans, the most abundant Siglecs are CD33 (Siglec-3), Siglec-4 (myelin-associated glycoprotein/MAG), and Siglec-11, Whereas in mice the most abundant are Siglec-1 (sialoadhesin), Siglec-2 (CD22), Siglec-E, Siglec-F, and Siglec-H. This review is divided into three parts. Firstly, we discuss the general biological aspects of Siglecs that are expressed in nervous tissue. Secondly, we discuss about the role of Siglecs in brain function and molecular mechanism for their function. Finally, we collate the available information on Siglecs and neurological disorders. It is intriguing to study this family of proteins in neurological disorders because they carry immunoinhibitory and immunoactivating motifs that can be vital in neuroinflammation.


Assuntos
Encéfalo/fisiologia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/fisiologia , Animais , Antígenos CD/metabolismo , Antígenos CD/fisiologia , Humanos , Camundongos , Glicoproteína Associada a Mielina/fisiologia , Ácido N-Acetilneuramínico/metabolismo , Doenças do Sistema Nervoso/fisiopatologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/fisiologia , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/fisiologia
20.
Inflammopharmacology ; 27(5): 863-869, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31309484

RESUMO

The failure of mechanisms of natural anti-coagulation either due to genetic impairment or due to severe external injuries may result in a condition called thrombosis. This is believed to be the primary cause for a variety of life-threatening conditions such as: heart attack, stroke, pulmonary embolism, thrombophlebitis, and deep venous thrombosis (DVT). The growing number of these incidents requires an alternative anti-coagulant or anti-thrombotic agent that has minimal side effects and improved efficiency. For decades, plant polyphenols, especially flavonoids, were known for their vital role in preventing various diseases such as cancer. Mitigating excessive oxidative stress caused by reactive oxygen species (ROS) with anti-oxidant-rich flavonoids may reduce the risk of hyper-activation of platelets, cardiovascular diseases (CVD), pain, and thrombosis. Furthermore, flavonoids may mitigate endothelial dysfunction (ED), which generally correlates to the development of coronary artery and vascular diseases. Flavonoids also reduce the risk of atherosclerosis and atherothrombotic disease by inhibiting excessive tissue factor (TF) availability in the endothelium. Although the role of flavonoids in CVD is widely discussed, to the best of our knowledge, their role as anti-thrombotic lead has not been discussed. This review aims to focus on the biological uses of dietary flavonoids and their role in the treatment of various coagulation disorders, and may provide some potential lead to the drug discovery process in this area.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Inflamação/tratamento farmacológico , Trombose/tratamento farmacológico , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Doenças Cardiovasculares/metabolismo , Humanos , Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Trombose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA