Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Neurotherapeutics ; 21(1): e00297, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38237403

RESUMO

Noninvasive brain stimulation (NIBS) techniques have demonstrated their potential for chronic pain management, yet their efficacy exhibits variability across studies. Refining stimulation targets and exploring additional targets offer a possible solution to this challenge. This study aimed to identify potential brain surface targets for NIBS in treating chronic pain disorders by integrating literature review, neuroimaging meta-analysis, and functional connectivity analysis on 90 chronic low back pain patients. Our results showed that the primary motor cortex (M1) (C3/C4, 10-20 EEG system) and prefrontal cortex (F3/F4/Fz) were the most used brain stimulation targets for chronic pain treatment according to the literature review. The bilateral precentral gyrus (M1), supplementary motor area, Rolandic operculum, and temporoparietal junction, were all identified as common potential NIBS targets through both a meta-analysis sourced from Neurosynth and functional connectivity analysis. This study presents a comprehensive summary of the current literature and refines the existing NIBS targets through a combination of imaging meta-analysis and functional connectivity analysis for chronic pain conditions. The derived coordinates (with integration of the international electroencephalography (EEG) 10/20 electrode placement system) within the above brain regions may further facilitate the localization of these targets for NIBS application. Our findings may have the potential to expand NIBS target selection beyond current clinical trials and improve chronic pain treatment.


Assuntos
Dor Crônica , Estimulação Encefálica Profunda , Humanos , Dor Crônica/terapia , Encéfalo , Estimulação Magnética Transcraniana/métodos , Estimulação Encefálica Profunda/métodos , Manejo da Dor/métodos , Doença Crônica
2.
Eur J Pain ; 28(4): 608-619, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009393

RESUMO

BACKGROUND: Low back pain (LBP) is a major public health issue that influences physical and emotional factors integral to the limbic system. This study aims to investigate the association between LBP and brain morphometry alterations as the duration of LBP increases (acute vs. chronic). METHODS: We used the UK Biobank data to investigate the morphological features of the limbic system in acute LBP (N = 115), chronic LBP (N = 243) and controls (N = 358), and tried to replicate our findings with an independent dataset composed of 45 acute LBP participants evaluated at different timepoints throughout 1 year from the OpenPain database. RESULTS: We found that in comparison with chronic LBP and pain-free controls, acute LBP was associated with increased volumes of the nucleus accumbens, amygdala, hippocampus, and thalamus, and increased grey matter volumes in the hippocampus and posterior cingulate gyrus. In the replication cohort, we found non-significantly larger hippocampus and thalamus volumes in the 3-month visit (acute LBP) compared to the 1-year visit (chronic LBP), with similar effect sizes as the UK Biobank dataset. CONCLUSIONS: Our results suggest that acute LBP is associated with dramatic morphometric increases in the limbic system and mesolimbic pathway, which may reflect an active brain response and self-regulation in the early stage of LBP. SIGNIFICANCE: Our study suggests that LBP in the acute phase is associated with the brain morphometric changes (increase) in some limbic areas, indicating that the acute phase of LBP may represent a crucial stage of self-regulation and active response to the disease's onset.


Assuntos
Dor Aguda , Dor Crônica , Dor Lombar , Humanos , Dor Lombar/diagnóstico por imagem , Dor Lombar/psicologia , Biobanco do Reino Unido , Bancos de Espécimes Biológicos , Sistema Límbico/diagnóstico por imagem , Encéfalo
3.
Neuroimage ; 284: 120433, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939891

RESUMO

Literature suggests that attention is a critical cognitive process for pain perception and modulation and may play an important role in placebo and nocebo effects. Here, we investigated how repeated transcranial direct current stimulation (tDCS) applied at the dorsolateral prefrontal cortex (DLPFC) for three consecutive days can modulate the brain functional connectivity (FC) of two networks involved in cognitive control: the frontoparietal network (FPN) and dorsal attention network (DAN), and its association with placebo and nocebo effects. 81 healthy subjects were randomized to three groups: anodal, cathodal, and sham tDCS. Resting state fMRI scans were acquired pre- and post- tDCS on the first and third day of tDCS. An Independent Component Analysis (ICA) was performed to identify the FPN and DAN. ANCOVA was applied for group analysis. Compared to sham tDCS, 1) both cathodal and anodal tDCS increased the FC between the DAN and right parietal operculum; cathodal tDCS also increased the FC between the DAN and right postcentral gyrus; 2) anodal tDCS led to an increased FC between the FPN and right parietal operculum, while cathodal tDCS was associated with increased FC between the FPN and left superior parietal lobule/precuneus; 3) the FC increase between the DAN and right parietal operculum was significantly correlated to the placebo analgesia effect in the cathodal group. Our findings suggest that both repeated cathodal and anodal tDCS could modulate the FC of two important cognitive brain networks (DAN and FPN), which may modulate placebo / nocebo effects.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Efeito Nocebo , Córtex Pré-Frontal/fisiologia , Encéfalo , Dor
4.
Biomedicines ; 11(7)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37509469

RESUMO

Both acupuncture and imagery have shown potential for chronic pain management. However, the mechanisms underlying their analgesic effects remain unclear. This study aims to explore the thalamocortical mechanisms underlying acupuncture and video-guided acupuncture imagery treatment (VGAIT), a combination of acupuncture and guided imagery, using the resting-state functional connectivity (rsFC) of three thalamic subdivisions-the ventral posterolateral thalamus (VPL), mediodorsal thalamus (MD), and motor thalamus subregion (Mthal)-associated with somatosensory, limbic, and motor circuity. Twenty-seven healthy individuals participated in a within-subject randomized crossover design study. Results showed that compared to sham acupuncture, real acupuncture altered the rsFC between the thalamus and default mode network (DMN) (i.e., mPFC, PCC, and precuneus), as well as the prefrontal and somatosensory cortex (SI/SII). Compared to the VGAIT control, VGAIT demonstrated greater rsFC between the thalamus and key nodes within the interoceptive network (i.e., anterior insula, ACC, PFC, and SI/SII), as well as the motor and sensory cortices (i.e., M1, SMA, and temporal/occipital cortices). Furthermore, compared to real acupuncture, VGAIT demonstrated increased rsFC between the thalamus (VPL/MD/Mthal) and task-positive network (TPN). Further correlations between differences in rsFC and changes in the heat or pressure pain threshold were also observed. These findings suggest that both acupuncture- and VGAIT-induced analgesia are associated with thalamocortical networks. Elucidating the underlying mechanism of VGAIT and acupuncture may facilitate their development, particularly VGAIT, which may be used as a potential remote-delivered pain management approach.

5.
Front Mol Neurosci ; 16: 1160006, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333617

RESUMO

Background: Previous studies have shown a significant response to acute transcutaneous vagus nerve stimulation (taVNS) in regions of the vagus nerve pathway, including the nucleus tractus solitarius (NTS), raphe nucleus (RN) and locus coeruleus (LC) in both healthy human participants and migraine patients. This study aims to investigate the modulation effect of repeated taVNS on these brainstem regions by applying seed-based resting-state functional connectivity (rsFC) analysis. Methods: 70 patients with migraine were recruited and randomized to receive real or sham taVNS treatments for 4 weeks. fMRI data were collected from each participant before and after 4 weeks of treatment. The rsFC analyses were performed using NTS, RN and LC as the seeds. Results: 59 patients (real group: n = 33; sham group: n = 29) completed two fMRI scan sessions. Compared to sham taVNS, real taVNS was associated with a significant reduction in the number of migraine attack days (p = 0.024) and headache pain intensity (p = 0.008). The rsFC analysis showed repeated taVNS modulated the functional connectivity between the brain stem regions of the vagus nerve pathway and brain regions associated with the limbic system (bilateral hippocampus), pain processing and modulation (bilateral postcentral gyrus, thalamus, and mPFC), and basal ganglia (putamen/caudate). In addition, the rsFC change between the RN and putamen was significantly associated with the reduction in the number of migraine days. Conclusion: Our findings suggest that taVNS can significantly modulate the vagus nerve central pathway, which may contribute to the potential treatment effects of taVNS for migraine.Clinical Trial Registration: http://www.chictr.org.cn/hvshowproject.aspx?id=11101, identifier ChiCTR-INR-17010559.

6.
Brain Sci ; 13(3)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36979205

RESUMO

Transcranial direct current stimulation (tDCS) is a promising non-invasive method to modulate brain excitability. The aim of this study was to better understand the cerebral blood flow (CBF) changes during and after repeated tDCS at the right dorsolateral prefrontal cortex (DLPFC) in healthy participants using pulsed continuous arterial spin labeling (pCASL). Elucidating CBF changes associated with repeated tDCS may shed light on the understanding of the mechanisms underlying the therapeutic effects of tDCS. tDCS was applied for three consecutive days for 20 min at 2 mA, and MRI scans were performed on day 1 and 3. During anodal tDCS, increased CBF was detected in the bilateral thalamus on day 1 and 3 (12% on day 1 and of 14% on day 3) and in the insula on day 1 (12%). After anodal tDCS on day 1, increased CBF was detected in the cerebellum and occipital lobe (11.8%), while both cathodal and sham tDCS were associated with increased CBF in the insula (11% and 10%, respectively). Moreover, anodal tDCS led to increased CBF in the lateral prefrontal cortex and midcingulate cortex in comparison to the sham. These findings suggest that tDCS can modulate the CBF and different tDCS modes may lead to different effects.

7.
Sleep Med ; 101: 393-400, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36516523

RESUMO

Both musculoskeletal pain and sleep disturbances are major health problems worldwide. Literature suggests that the two are reciprocally related and both may be associated with changes in C-reactive protein (CRP) levels. However, the relationships among musculoskeletal pain, sleep duration, and CRP remain unclear. In this cross-sectional study, we investigated the relationship between acute and chronic musculoskeletal pain, sleep, and inflammation using the data from the initial visit of the UK Biobank. 17,642 individuals with chronic musculoskeletal pain, 11,962 individuals with acute musculoskeletal pain, and 29,604 pain-free controls were included in the analysis. In addition, we validated the findings using data from the second visit assessment of the UK Biobank. We found that 1) chronic pain was associated with higher CRP levels compared to both acute pain and the pain-free controls; 2) chronic pain was associated with a lower sleep score (a measurement of sleep patterns), compared to acute pain and the pain-free controls; and acute pain was associated with lower sleep scores compared to the controls; 3) there was a significant negative association between the sleep score and CRP; 4) CRP may partially mediate the association between chronic pain and decreased sleep score. However, the effect size of the mediation was rather small, and the pathophysiological significance remains uncertain. Further validation is needed. These findings were partly replicated in the UK Biobank second visit assessment cohort with a smaller sample size. Our findings, which are based on the large UK Biobank dataset, support the interplay between musculoskeletal pain, sleep patterns, and the potential mediating role of CRP on this reciprocal relationship.


Assuntos
Dor Aguda , Dor Crônica , Dor Musculoesquelética , Duração do Sono , Humanos , Dor Aguda/epidemiologia , Bancos de Espécimes Biológicos , Proteína C-Reativa/análise , Dor Crônica/epidemiologia , Estudos Transversais , Dor Musculoesquelética/epidemiologia , Reino Unido/epidemiologia , Conjuntos de Dados como Assunto
8.
Neuromodulation ; 25(3): 450-460, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35088753

RESUMO

OBJECTIVES: Major depressive disorder (MDD) is one of the most common mental illnesses. This study aims to investigate the effectiveness of transcutaneous auricular vagus nerve stimulation (taVNS) compared with the effectiveness of citalopram, a commonly used antidepressant, in patients with depression. MATERIAL AND METHODS: A total of 107 male and female patients with MDD (55 in the taVNS group and 52 in the citalopram group) were enrolled in a prospective 12-week, single-blind, comparative effectiveness trial. Participants were recruited from the outpatient departments of three hospitals in China. Participants were randomly assigned to either taVNS treatment (eight weeks, twice per day, with an additional four-week follow-up) or citalopram treatment (12 weeks, 40 mg/d). The primary outcome was the 17-item Hamilton Depression Rating Scale (HAM-D17) measured every two weeks by trained interviewers blinded to the treatment assignment. The secondary end points included the 14-item Hamilton Anxiety Scale and peripheral blood biochemical indexes. RESULTS: The HAM-D17 scores were reduced in both treatment groups; however, there was no significant group-by-time interaction (95% CI: -0.07 to 0.15, p = 0.79). Nevertheless, we found that taVNS produced a significantly higher remission rate at week four and week six than citalopram. Both treatments were associated with significant changes in the peripheral blood levels of 5-hydroxytryptamine, dopamine, γ-aminobutyric acid, and noradrenaline, but there was no significant difference between the two groups. CONCLUSION: taVNS resulted in symptom improvement similar to that of citalopram; thus, taVNS should be considered as a therapeutic option in the multidisciplinary management of MDD. Nevertheless, owing to the design of this study, it cannot be ruled out that the reduction in depression severity in both treatment groups could be a placebo effect.


Assuntos
Transtorno Depressivo Maior , Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Citalopram/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Feminino , Humanos , Masculino , Estudos Prospectivos , Método Simples-Cego , Nervo Vago , Estimulação do Nervo Vago/métodos
9.
J Transl Med ; 19(1): 354, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404427

RESUMO

BACKGROUND: A growing body of evidence suggests that transcutaneous auricular vagus nerve stimulation (taVNS) may relieve symptoms of migraineurs. Frequency is one of the key stimulation parameters. The aim of this study is to investigate the modulation effect of taVNS frequency on the descending pain modulation system (DPMS) in patients with migraine. METHODS: Twenty-four episodic migraineurs without aura (21 females) were recruited for the single-blind, crossover, functional magnetic resonance imaging (fMRI) study. Each participant attended two separate fMRI scan sessions, one for 1 Hz and another for 20 Hz taVNS, in a random order. Seed-based functional connectivity analysis was applied using the ventrolateral periaqueductal gray (PAG) as the region of interest. RESULTS: Compared with the pre-taVNS resting state, continuous 1 Hz taVNS (during) produced a significant increase in functional connectivity between the PAG and the bilateral middle cingulate cortex (MCC), right precuneus, left middle frontal gyrus (MFG), and left cuneus. Compared with 20 Hz taVNS, 1 Hz taVNS produced greater PAG connectivity increases with the MCC, right precuneus/posterior cingulate cortex, left insula, and anterior cingulate cortex (ACC). A significant negative correlation was observed between the number of migraine attacks in the previous 4 weeks and the PAG-MCC functional connectivity in the pre-taVNS resting-state before 1 Hz taVNS. CONCLUSIONS: Our findings suggest that taVNS with different frequencies may produce different modulation effects on the descending pain modulation system, demonstrating the important role of stimulation frequency in taVNS treatment.


Assuntos
Transtornos de Enxaqueca , Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Feminino , Humanos , Imageamento por Ressonância Magnética , Transtornos de Enxaqueca/terapia , Substância Cinzenta Periaquedutal , Método Simples-Cego
10.
Reg Anesth Pain Med ; 46(2): 145-150, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33262253

RESUMO

BACKGROUND: Dysfunction of the thalamocortical connectivity network is thought to underlie the pathophysiology of the migraine. This current study aimed to explore the thalamocortical connectivity changes during 4 weeks of continuous transcutaneous vagus nerve stimulation (taVNS) treatment on migraine patients. METHODS: 70 migraine patients were recruited and randomized in an equal ratio to receive real taVNS or sham taVNS treatments for 4 weeks. Resting-state functional MRI was collected before and after treatment. The thalamus was parceled into functional regions of interest (ROIs) on the basis of six priori-defined cortical ROIs covering the entire cortex. Seed-based functional connectivity analysis between each thalamic subregion and the whole brain was further compared across groups after treatment. RESULTS: Of the 59 patients that finished the study, those in the taVNS group had significantly reduced number of migraine days, pain intensity and migraine attack times after 4 weeks of treatment compared with the sham taVNS. Functional connectivity analysis revealed that taVNS can increase the connectivity between the motor-related thalamus subregion and anterior cingulate cortex/medial prefrontal cortex, and decrease the connectivity between occipital cortex-related thalamus subregion and postcentral gyrus/precuneus. CONCLUSION: Our findings suggest that taVNS can relieve the symptoms of headache as well as modulate the thalamocortical circuits in migraine patients. The results provide insights into the neural mechanism of taVNS and reveal potential therapeutic targets for migraine patients.


Assuntos
Transtornos de Enxaqueca , Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Encéfalo , Humanos , Imageamento por Ressonância Magnética , Transtornos de Enxaqueca/diagnóstico por imagem , Transtornos de Enxaqueca/terapia
11.
J Neurosci Res ; 99(8): 1908-1921, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33217775

RESUMO

Adolescent alcohol drinking is widely recognized as a significant public health problem, and evidence is accumulating that sufficient levels of consumption during this critical period of brain development have an enduring impact on neural and behavioral function. Recent studies have indicated that adolescent intermittent ethanol (AIE) exposure alters astrocyte function, astrocyte-neuronal interactions, and related synaptic regulation and activity. However, few of those studies have included female animals, and a broader assessment of AIE effects on the proteins mediating astrocyte-mediated glutamate dynamics and synaptic function is needed. We measured synaptic membrane expression of several such proteins in the dorsal and ventral regions of the hippocampal formation (DH, VH) from male and female rats exposed to AIE or adolescent intermittent water. In the DH, AIE caused elevated expression of glutamate transporter 1 (GLT-1) in both males and females, elevated postsynaptic density 95 expression in females only, and diminished NMDA receptor subunit 2A expression in males only. AIE and sex interactively altered ephrin receptor A4 (EphA4) expression in the DH. In the VH, AIE elevated expression of the cystine/glutamate antiporter and the glutamate aspartate transporter 1 (GLAST) in males only. Compared to males, female animals expressed lower levels of GLT-1 in the DH and greater levels of ephrin receptor B6 (EphB6) in the VH, in the absence of AIE effects. These results support the growing literature indicating that adolescent alcohol exposure produces long-lasting effects on astrocyte function and astrocyte-neuronal interactions. The sex and subregion specificity of these effects have mechanistic implications for our understanding of AIE effects generally.


Assuntos
Astrócitos/metabolismo , Etanol/administração & dosagem , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Proteína 4 Homóloga a Disks-Large/metabolismo , Feminino , Homeostase/efeitos dos fármacos , Humanos , Masculino , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor EphB6/metabolismo
12.
J Clin Med ; 9(8)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752265

RESUMO

Scalp acupuncture is a modality of acupuncture in which acupuncture needles are inserted into a certain layer of the scalp in order to affect the function of corresponding areas of the cerebral cortex and relieve symptoms. Clinical studies have demonstrated the potential of scalp acupuncture as a non-pharmacological treatment for dementia. Unfortunately, recent findings from brain neuroimaging studies on dementia have not been incorporated into scalp acupuncture. This study aims to integrate meta-analysis, resting-state functional connectivity, and diffusion tensor imaging (DTI) to identify potential locations of scalp acupuncture for treatment of dementia. We found that the prefrontal cortex, the medial prefrontal cortex, the middle and superior temporal gyrus, the temporal pole, the supplementary motor area, the inferior occipital gyrus, and the precuneus are involved in the pathophysiology of dementia and, therefore, may be the target areas of scalp acupuncture for dementia treatment. The neuroimaging-based scalp acupuncture protocol developed in this study may help to refine the locations for the treatment of dementia. Integrating multidisciplinary methods to identify key surface cortical areas associated with a certain disorder may shed light on the development of scalp acupuncture and other neuromodulation methods such as transcranial electrical current stimulation, particularly in the domain of identifying stimulation locations.

13.
Neural Regen Res ; 15(8): 1496-1501, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31997814

RESUMO

Adolescent alcohol abuse is a substantive public health problem that has been the subject of intensive study in recent years. Despite reports of a wide range of effects of adolescent intermittent ethanol (AIE) exposure on brain and behavior, little is known about the mechanisms that may underlie those effects, and even less about treatments that might reverse them. Recent studies from our laboratory have indicated that AIE produced enduring changes in astrocyte function and synaptic activity in the hippocampal formation, suggesting the possibility of an alteration in astrocyte-neuronal connectivity and function. We utilized astrocyte-specific, membrane restricted viral labeling paired with immunohistochemistry to perform confocal single cell astrocyte imaging, three-dimensional reconstruction, and quantification of astrocyte morphology in hippocampal area CA1 from adult rats after AIE. Additionally, we assessed the colocalization of astrocyte plasma membrane labeling with immunoreactivity for AMPA-(α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) glutamate receptor 1, an AMPA receptor subunit and established neuronal marker of excitatory synapses, as a metric of astrocyte-synapse proximity. AIE significantly reduced the colocalization of the astrocyte plasma membrane with synaptic marker puncta in adulthood. This is striking in that it suggests not only an alteration of the physical association of astrocytes with synapses by AIE, but one that lasts into adulthood - well after the termination of alcohol exposure. Perhaps even more notable, the AIE-induced reduction of astrocyte-synapse interaction was reversed by sub-chronic treatment with the clinically used agent, gabapentin (Neurontin), in adulthood. This suggests that a medication in common clinical use may have the potential to reverse some of the enduring effects of adolescent alcohol exposure on brain function. All animal experiments conducted were approved by the Duke University Institutional Animal Care and Use Committee (Protocol Registry Number A159-18-07) on July 27, 2018.

14.
Neuroscience ; 400: 98-109, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30599266

RESUMO

It is well established that astrocytes play pivotal roles in neuronal synapse formation and maturation as well as in the modulation of synaptic transmission. Despite their general importance for brain function, relatively little is known about the maturation of astrocytes during normal postnatal development, especially during adolescence, and how that maturation may influence astroglial-synaptic contact. The medial prefrontal cortex (mPFC) and dorsal hippocampus (dHipp) are critical for executive function, memory, and their effective integration. Further, both regions undergo significant functional changes during adolescence and early adulthood that are believed to mediate these functions. However, it is unclear the extent to which astrocytes change during these late developmental periods, nor is it clear whether their association with functional synapses shifts as adolescent and young adult maturation proceeds. Here we utilize an astrocyte-specific viral labeling approach paired with high-resolution single-cell astrocyte imaging and three-dimensional reconstruction to determine whether mPFC and dHipp astrocytes have temporally distinct maturation trajectories. mPFC astrocytes, in particular, continue to mature well into emerging adulthood (postnatal day 70). Moreover, this ongoing maturation is accompanied by a substantial increase in colocalization of astrocytes with the postsynaptic neuronal marker, PSD-95. Taken together, these data provide novel insight into region-specific astrocyte-synapse interactions in late CNS development and into adulthood, thus raising implications for the mechanism of post-adolescent development of the mPFC.


Assuntos
Astrócitos/citologia , Astrócitos/fisiologia , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Sinapses/fisiologia , Animais , Tamanho Celular , Masculino , Ratos Sprague-Dawley , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA