RESUMO
The transient receptor potential melastatin type 6 (TRPM6) is a divalent cation channel pivotal for gatekeeping Mg2+ balance. Disturbance in Mg2+ balance has been associated with the chronic use of proton pump inhibitors (PPIs) such as omeprazole. In this study, we investigated if TRPM6 plays a role in mediating the effects of short-term (4 days) omeprazole treatment on intestinal Mg2+ malabsorption using intestine-specific TRPM6 knockout (Vill1-TRPM6-/-) mice. To do this, forty-eight adult male C57BL/6 J mice (50% TRPM6fl/fl and 50% Vill1-TRPM6-/-) were characterized, and the distal colon of these mice was subjected to RNA sequencing. Moreover, these mice were exposed to 20 mg/kg bodyweight omeprazole or placebo for 4 days. Vill1-TRPM6-/- mice had a significantly lower 25Mg2+ absorption compared to control TRPM6fl/fl mice, accompanied by lower Mg2+ serum levels, and urinary Mg2+ excretion. Furthermore, renal Slc41a3, Trpm6, and Trpm7 gene expressions were higher in these animals, indicating a compensatory mechanism via the kidney. RNA sequencing of the distal colon revealed a downregulation of the Mn2+ transporter Slc30a10. However, no changes in Mn2+ serum, urine, and feces levels were observed. Moreover, 4 days omeprazole treatment did not affect Mg2+ homeostasis as no changes in serum 25Mg2+ and total Mg2+ were seen. In conclusion, we demonstrate here for the first time that Vill1-TRPM6-/- mice have a lower Mg2+ absorption in the intestines. Moreover, short-term omeprazole treatment does not alter Mg2+ absorption in both Vill1-TRPM6-/- and TRPM6fl/fl mice. This suggests that TRPM6-mediated Mg2+ absorption in the intestines is not affected by short-term PPI administration.
RESUMO
The Ras-related GTP-binding protein D (RRAGD) gene plays a crucial role in cellular processes. Recently, RRAGD variants found in patients have been implicated in a novel disorder with kidney tubulopathy and dilated cardiomyopathy. Currently, the consequences of RRAGD variants at the organismal level are unknown. Therefore, this study investigated the impact of RRAGD variants on cardiac function using a zebrafish embryo model. Furthermore, the potential usage of rapamycin, an mTOR inhibitor, as a therapy was assessed in this model. Zebrafish embryos were injected with RRAGD p.S76L and p.P119R cRNA and the resulting heart phenotypes were studied. Our findings reveal that overexpression of RRAGD mutants resulted in decreased ventricular fractional shortening, ejection fraction, and pericardial swelling. In RRAGD S76L-injected embryos, lower survival and heartbeat were observed, whereas survival was unaffected in RRAGD P119R embryos. These observations were reversible following therapy with the mTOR inhibitor rapamycin. Moreover, no effects on electrolyte homeostasis were observed. Together, these findings indicate a crucial role of RRAGD in cardiac function. In the future, the molecular mechanisms by which RRAGD variants result in cardiac dysfunction and if the effects of rapamycin are specific for RRAGD-dependent cardiomyopathy should be studied in clinical studies.NEW & NOTEWORTHY The resultant heart-associated phenotypes in the zebrafish embryos of this study serve as a valuable experimental model for this rare cardiomyopathy. Moreover, the potential therapeutic property of rapamycin in cardiac dysfunctions was highlighted, making this study a pivotal step toward prospective clinical applications.
Assuntos
Fenótipo , Sirolimo , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Sirolimo/farmacologia , Modelos Animais de Doenças , Inibidores de MTOR/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Mutação , Coração/fisiopatologia , Coração/efeitos dos fármacos , Coração/embriologia , Volume Sistólico/efeitos dos fármacosAssuntos
Deficiência de Magnésio , Magnésio , Humanos , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Absorção Intestinal , Rim/metabolismo , Rim/fisiopatologia , Magnésio/sangue , Magnésio/metabolismo , Magnésio/uso terapêutico , Deficiência de Magnésio/sangue , Deficiência de Magnésio/tratamento farmacológico , Deficiência de Magnésio/genética , Deficiência de Magnésio/fisiopatologia , Literatura de Revisão como Assunto , Síndrome do Intestino Curto/sangue , Síndrome do Intestino Curto/complicações , Síndrome do Intestino Curto/genética , Síndrome do Intestino Curto/fisiopatologiaRESUMO
Background: Heterozygous variants in Transient receptor potential melastatin type 7 (TRPM7), encoding an essential and ubiquitously expressed cation channel, may cause hypomagnesemia, but current evidence is insufficient to draw definite conclusions and it is unclear whether any other phenotypes can occur. Methods: Individuals with unexplained hypomagnesemia underwent whole-exome sequencing which identified TRPM7 variants. Pathogenicity of the identified variants was assessed by combining phenotypic, functional and in silico analyses. Results: We report three new heterozygous missense variants in TRPM7 (p.Met1000Thr, p.Gly1046Arg, p.Leu1081Arg) in individuals with hypomagnesemia. Strikingly, autism spectrum disorder and developmental delay, mainly affecting speech and motor skills, was observed in all three individuals, while two out of three also presented with seizures. The three variants are predicted to be severely damaging by in silico prediction tools and structural modeling. Furthermore, these variants result in a clear loss-of-function of TRPM7-mediated magnesium uptake in vitro, while not affecting TRPM7 expression or insertion into the plasma membrane. Conclusions: This study provides additional evidence for the association between heterozygous TRPM7 variants and hypomagnesemia and adds developmental delay to the phenotypic spectrum of TRPM7-related disorders. Considering that the TRPM7 gene is relatively tolerant to loss-of-function variants, future research should aim to unravel by what mechanisms specific heterozygous TRPM7 variants can cause disease.
RESUMO
Although age-dependent alterations in urinary magnesium (Mg2+) excretion have been described, the underlying mechanism remains elusive. As heritability significantly contributes to variations in urinary Mg2+ excretion, we measured urinary Mg2+ excretion at different ages in a cohort of genetically variable Diversity Outbred (DO) mice. Compared with animals aged 6 mo, an increase in Mg2+ excretion was observed at 12 and 18 mo. Quantitative trait locus (QTL) analysis revealed an association of a locus on chromosome 10 with Mg2+ excretion at 6 mo of age, with Oit3 (encoding oncoprotein-induced transcript 3; OIT3) as our primary candidate gene. To study the possible role of OIT3 in renal Mg2+ handling, we generated and characterized Oit3 knockout (Oit3-/-) mice. Although a slightly lower serum Mg2+ concentration was present in male Oit3-/- mice, this effect was not observed in female Oit3-/- mice. In addition, urinary Mg2+ excretion and the expression of renal magnesiotropic genes were unaltered in Oit3-/- mice. For animals aged 12 and 18 mo, QTL analysis revealed an association with a locus on chromosome 19, which contains the gene encoding TRPM6, a known Mg2+ channel involved in renal Mg2+ reabsorption. Comparison with RNA sequencing (RNA-Seq) data revealed that Trpm6 mRNA expression is inversely correlated with the QTL effect, implying that TRPM6 may be involved in age-dependent changes in urinary Mg2+ excretion in mice. In conclusion, we show here that variants in Oit3 and Trpm6 are associated with urinary Mg2+ excretion at distinct periods of life, although OIT3 is unlikely to affect renal Mg2+ handling.NEW & NOTEWORTHY Aging increased urinary magnesium (Mg2+) excretion in mice. We show here that variation in Oit3, a candidate gene for the locus associated with Mg2+ excretion in young mice, is unlikely to be involved as knockout of Oit3 did not affect Mg2+ excretion. Differences in the expression of the renal Mg2+ channel TRPM6 may contribute to the variation in urinary Mg2+ excretion in older mice.
Assuntos
Envelhecimento , Magnésio , Camundongos Knockout , Locos de Características Quantitativas , Canais de Cátion TRPM , Animais , Magnésio/urina , Magnésio/metabolismo , Magnésio/sangue , Locos de Características Quantitativas/genética , Masculino , Feminino , Camundongos , Envelhecimento/genética , Canais de Cátion TRPM/genética , Rim/metabolismoAssuntos
Deficiência de Magnésio , Magnésio , Feminino , Humanos , Magnésio/sangue , Magnésio/metabolismo , Magnésio/uso terapêutico , Deficiência de Magnésio/diagnóstico , Deficiência de Magnésio/tratamento farmacológico , Deficiência de Magnésio/etiologia , Deficiência de Magnésio/metabolismo , Células/metabolismo , Proteínas de Transporte de Cátions/metabolismoRESUMO
Mutations in PKD1 and PKD2 cause autosomal dominant polycystic kidney disease (ADPKD), which is characterized by the formation of fluid-filled cysts in the kidney. In a subset of ADPKD patients, reduced blood calcium (Ca2+) and magnesium (Mg2+) concentrations are observed. As cystic fluid contains increased ATP concentrations and purinergic signaling reduces electrolyte reabsorption, we hypothesized that inhibiting ATP release could normalize blood Ca2+ and Mg2+ levels in ADPKD. Inducible kidney-specific Pkd1 knockout mice (iKsp-Pkd1-/-) exhibit hypocalcemia and hypomagnesemia in a precystic stage and show increased expression of the ATP-release channel pannexin-1. Therefore, we administered the pannexin-1 inhibitor brilliant blue-FCF (BB-FCF) every other day from Day 3 to 28 post-induction of Pkd1 gene inactivation. On Day 29, both serum Ca2+ and Mg2+ concentrations were reduced in iKsp-Pkd1-/- mice, while urinary Ca2+ and Mg2+ excretion was similar between the genotypes. However, serum and urinary levels of Ca2+ and Mg2+ were unaltered by BB-FCF treatment, regardless of genotype. BB-FCF did significantly decrease gene expression of the ion channels Trpm6 and Trpv5 in both control and iKsp-Pkd1-/- mice. Finally, no renoprotective effects of BB-FCF treatment were observed in iKsp-Pkd1-/- mice. Thus, administration of BB-FCF failed to normalize serum Ca2+ and Mg2+ levels.
Assuntos
Rim Policístico Autossômico Dominante , Animais , Humanos , Camundongos , Trifosfato de Adenosina/metabolismo , Rim/metabolismo , Camundongos Knockout , Mutação , Rim Policístico Autossômico Dominante/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/farmacologia , Equilíbrio HidroeletrolíticoRESUMO
Variants in the CNNM2 gene are causative for hypomagnesaemia, seizures and intellectual disability, although the phenotypes can be variable. This study aims to understand the genotype-phenotype relationship in affected individuals with CNNM2 variants by phenotypic, functional and structural analysis of new as well as previously reported variants. This results in the identification of seven variants that significantly affect CNNM2-mediated Mg2+ transport. Pathogenicity of these variants is further supported by structural modelling, which predicts CNNM2 structure to be affected by all of them. Strikingly, seizures and intellectual disability are absent in 4 out of 7 cases, indicating these phenotypes are caused either by specific CNNM2 variant only or by additional risk factors. Moreover, in line with sporadic observations from previous reports, CNNM2 variants might be associated with disturbances in parathyroid hormone and Ca2+ homeostasis.
Assuntos
Proteínas de Transporte de Cátions , Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Magnésio/metabolismo , Convulsões/genética , Fenótipo , Proteínas de Transporte de Cátions/genéticaRESUMO
Calciprotein particles (CPPs) provide an efficient mineral buffering system to prevent the complexation of phosphate and calcium in the circulation. However, in chronic kidney disease (CKD), the phosphate load exceeds the mineral buffering capacity, resulting in the formation of crystalline CPP2 particles. CPP2 have been associated with cardiovascular events and mortality. Moreover, CPP2 have been demonstrated to induce calcification in vitro. In this study, we examined the fate of CPP2 in a rat model of CKD. Calcification was induced in Sprague-Dawley rats by 5/6 nephrectomy (5/6-Nx) combined with a high-phosphate diet. Control rats received sham surgery and high-phosphate diet. Twelve weeks after surgery, kidney failure was significantly induced in 5/6-Nx rats as determined by enhanced creatinine and urea plasma levels and abnormal kidney histological architecture. Subsequently, radioactive and fluorescent (FITC)-labeled CPP2 ([89Zr]Zr-CPP2-FITC) were injected intravenously to determine clearance in vivo. Using positron emission tomography scans and radioactive biodistribution measurements, it was demonstrated that [89Zr]Zr-CPP2-FITC are mainly present in the liver and spleen in both 5/6-Nx and sham rats. Immunohistochemistry showed that [89Zr]Zr-CPP2-FITC are predominantly taken up by Kupffer cells and macrophages. However, [89Zr]Zr-CPP2-FITC could also be detected in hepatocytes. In the different parts of the aorta and in the blood, low values of [89Zr]Zr-CPP2-FITC were detectable, independent of the presence of calcification. CPP2 are cleared rapidly from the circulation by the liver and spleen in a rat model of CKD. In the liver, Kupffer cells, macrophages, and hepatocytes contribute to CPP2 clearance.NEW & NOTEWORTHY Calciprotein particles (CPPs) buffer calcium and phosphate in the blood to prevent formation of crystals. In CKD, increased phosphate levels may exceed the buffering capacity of CPPs, resulting in crystalline CPPs that induce calcification. This study demonstrates that labeled CPPs are predominantly cleared from the circulation in the liver by Kupffer cells, macrophages, and hepatocytes. Our results suggest that targeting liver CPP clearance may reduce the burden of crystalline CPP in the development of vascular calcification.
Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Ratos , Animais , Baço/metabolismo , Cálcio/metabolismo , Fluoresceína-5-Isotiocianato , Distribuição Tecidual , Ratos Sprague-Dawley , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/etiologia , Minerais , Fígado/metabolismo , Fosfatos , Insuficiência Renal Crônica/patologiaRESUMO
People with type 2 diabetes have a tenfold higher prevalence of hypomagnesemia, which is suggested to be caused by low dietary magnesium intake, medication use, and genetics. This study aims to identify the genetic loci that influence serum magnesium concentration in 3466 people with type 2 diabetes. The GWAS models were adjusted for age, sex, eGFR, and HbA1c. Associated traits were identified using publicly available data from GTEx consortium, a human kidney eQTL atlas, and the Open GWAS database. The GWAS identified a genome-wide significant locus in TAF3 (p = 2.9 × 10-9) in people with type 2 diabetes. In skeletal muscle, loci located in TAF3 demonstrate an eQTL link to ATP5F1C, a gene that is involved in the formation of Mg2+-ATP. Serum Mg2+ levels were associated with MUC1/TRIM46 (p = 2.9 × 10-7), SHROOM3 (p = 4.0 × 10-7), and SLC22A7 (p = 1.0 × 10-6) at nominal significance, which is in combination with the eQTL data suggesting that they are possible candidates for renal failure. Several genetic loci were in agreement with previous genomic studies which identified MUC1/TRIM46 (Pmeta = 6.9 × 10-29, PQ = 0.81) and SHROOM3 (Pmeta = 2.9 × 10-27, PQ = 0.04) to be associated with serum Mg2+ in the general population. In conclusion, serum magnesium concentrations are associated with genetic variability around the regions of TAF3, MUC1/TRIM46, SHROOM3, and SLC22A7 in type 2 diabetes.
RESUMO
BACKGROUND: Chronic kidney disease (CKD) affects many people worldwide and early diagnosis is essential for successful treatment and improved outcome. Unfortunately, current methods are insufficient especially for early disease detection. However, advances in the analytical methods for urinary biomarkers may provide a unique opportunity for diagnosis and management of CKD. This review explores evolving technology and highlights the importance of early marker detection in these patients. APPROACH: A search strategy was set up using the terms CKD, biomarkers, and urine. The search included 53 studies comprising 37 biomarkers. The value of these biomarkers for CKD are based on their ability to diagnose CKD, monitor progression, assess mortality and nephrotoxicity. RESULTS: KIM-1 was the best marker for diagnosis as it increased with the development of incident CKD. DKK3 increased in patients with declining eGFR, whereas UMOD decreased in those with declining kidney function. Unfortunately, none fulfilled all criteria to adequately assess mortality and nephrotoxicity. CONCLUSION: New developments in the field of urinalysis using smart toilets may open several possibilities for urinary biomarkers. This review explored which biomarkers could be used for CKD disease detection and management.
Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Humanos , Creatinina , Insuficiência Renal Crônica/diagnóstico , Rim , Biomarcadores , Urinálise , Injúria Renal Aguda/diagnóstico , Progressão da DoençaRESUMO
In the kidney, the flow rate of the pro-urine through the renal tubules is highly variable. The tubular epithelial cells sense these variations in pro-urinary flow rate in order to regulate various physiological processes, including electrolyte reabsorption. One of the mechanosensitive pathways activated by flow is the release of ATP, which can then act as a autocrine or paracrine factor. Increased ATP release is observed in various kidney diseases, among others autosomal dominant polycystic kidney disease (ADPKD). However, the mechanisms underlying flow-induced ATP release in the collecting duct, especially in the inner medullary collecting duct, remain understudied. Using inner medullary collecting duct 3 (IMCD3) cells in a microfluidic setup, we show here that administration of a high flow rate for 1 min results in an increased ATP release compared to a lower flow rate. Although the ATP release channel pannexin-1 contributed to flow-induced ATP release in Pkd1-/- IMCD3 cells, it did not in wildtype IMCD3 cells. In addition, flow application increased the expression of the putative ATP release channel connexin-30.3 (CX30.3) in wildtype and Pkd1-/- IMCD3 cells. However, CX30.3 knockout IMCD3 cells exhibited a similar flow-induced ATP release as wildtype IMCD3 cells, suggesting that CX30.3 does not drive flow-induced ATP release in wildtype IMDC3 cells. Collectively, our results show differential mechanisms underlying flow-induced ATP release in wildtype and Pkd1-/- IMCD3 cells and further strengthen the link between ADPKD and pannexin-1-dependent ATP release.
Assuntos
Túbulos Renais Coletores , Rim Policístico Autossômico Dominante , Humanos , Rim Policístico Autossômico Dominante/metabolismo , Rim/metabolismo , Expressão Gênica , Trifosfato de Adenosina/metabolismo , Túbulos Renais Coletores/metabolismoRESUMO
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of fluid-filled cysts within the kidney due to mutations in PKD1 or PKD2. Although the disease remains incompletely understood, one of the factors associated with ADPKD progression is the release of nucleotides (including ATP), which can initiate autocrine or paracrine purinergic signaling by binding to their receptors. Recently, we and others have shown that increased extracellular vesicle (EVs) release from PKD1 knockout cells can stimulate cyst growth through effects on recipient cells. Given that EVs are an important communicator between different nephron segments, we hypothesize that EVs released from PKD1 knockout distal convoluted tubule (DCT) cells can stimulate cyst growth in the downstream collecting duct (CD). Here, we show that administration of EVs derived from Pkd1-/- mouse distal convoluted tubule (mDCT15) cells result in a significant increase in extracellular ATP release from Pkd1-/- mouse inner medullary collecting duct (iMCD3) cells. In addition, exposure of Pkd1-/- iMCD3 cells to EVs derived from Pkd1-/- mDCT15 cells led to an increase in the phosphorylation of the serine/threonine-specific protein Akt, suggesting activation of proliferative pathways. Finally, the exposure of iMCD3 Pkd1-/- cells to mDCT15 Pkd1-/- EVs increased cyst size in Matrigel. These findings indicate that EVs could be involved in intersegmental communication between the distal convoluted tubule and the collecting duct and potentially stimulate cyst growth.
Assuntos
Cistos , Vesículas Extracelulares , Rim Policístico Autossômico Dominante , Camundongos , Animais , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Rim/metabolismo , Comunicação Celular , Vesículas Extracelulares/metabolismo , Trifosfato de Adenosina/metabolismo , Cistos/metabolismo , Canais de Cátion TRPP/metabolismoRESUMO
This article has been withdrawn due to a publisher error that caused it to be duplicated. The definitive version of this article is published under https://doi.org/10.1210/clinem/dgad147.
RESUMO
CONTEXT: Kenny-Caffey syndrome (KCS) is a rare hereditary disorder characterized by short stature, hypoparathyroidism, and electrolyte disturbances. KCS1 and KCS2 are caused by pathogenic variants in TBCE and FAM111A, respectively. Clinically the phenotypes are difficult to distinguish. OBJECTIVE: The objective was to determine and expand the phenotypic spectrum of KCS1 and KCS2 in order to anticipate complications that may arise in these disorders. METHODS: We clinically and genetically analyzed 10 KCS2 patients from 7 families. Because we found unusual phenotypes in our cohort, we performed a systematic review of genetically confirmed KCS cases using PubMed and Scopus. Evaluation by 3 researchers led to the inclusion of 26 papers for KCS1 and 16 for KCS2, totaling 205 patients. Data were extracted following the Cochrane guidelines and assessed by 2 independent researchers. RESULTS: Several patients in our KCS2 cohort presented with intellectual disability (3/10) and chronic kidney disease (6/10), which are not considered common findings in KCS2. Systematic review of all reported KCS cases showed that the phenotypes of KCS1 and KCS2 overlap for postnatal growth retardation (KCS1: 52/52, KCS2: 23/23), low parathyroid hormone levels (121/121, 16/20), electrolyte disturbances (139/139, 24/27), dental abnormalities (47/50, 15/16), ocular abnormalities (57/60, 22/23), and seizures/spasms (103/115, 13/16). Symptoms more prevalent in KCS1 included intellectual disability (74/80, 5/24), whereas in KCS2 bone cortical thickening (1/18, 16/20) and medullary stenosis (7/46, 27/28) were more common. CONCLUSION: Our case series established chronic kidney disease as a new feature of KCS2. In the literature, we found substantial overlap in the phenotypic spectra of KCS1 and KCS2, but identified intellectual disability and the abnormal bone phenotype as the most distinguishing features.
Assuntos
Hiperostose Cortical Congênita , Hipoparatireoidismo , Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Hiperostose Cortical Congênita/genética , Fenótipo , Eletrólitos , Hipoparatireoidismo/genéticaRESUMO
Mutations or deletions in transcription factor hepatocyte nuclear factor 1 homeobox ß (HNF1ß) cause renal cysts and/or malformation, maturity-onset diabetes of the young and electrolyte disturbances. Here, we applied a comprehensive bioinformatic approach on ChIP-seq, RNA-seq, and gene expression array studies to identify novel transcriptional targets of HNF1ß explaining the kidney phenotype of HNF1ß patients. We identified BAR/IMD Domain Containing Adaptor Protein 2 Like 2 (BAIAP2L2), as a novel transcriptional target of HNF1ß and validated direct transcriptional activation of the BAIAP2L2 promoter by a reporter luciferase assay. Using mass spectrometry analysis, we show that BAIAP2L2 binds to other members of the I-BAR domain-containing family: BAIAP2 and BAIAP2L1. Subsequently, the role of BAIAP2L2 in maintaining epithelial cell integrity in the kidney was assessed using Baiap2l2 knockout cell and mouse models. Kidney epithelial cells lacking functional BAIAP2L2 displayed normal F-actin distribution at cell-cell contacts and formed polarized three-dimensional spheroids with a lumen. In vivo, Baiap2l2 knockout mice displayed normal kidney and colon tissue morphology and serum and urine electrolyte concentrations were not affected. Altogether, our study is the first to characterize the function of BAIAP2L2 in the kidney in vivo and we report that mice lacking BAIAP2L2 exhibit normal electrolyte homeostasis and tissue morphology under physiological conditions.
Assuntos
Cistos , Doenças Renais Císticas , Animais , Humanos , Camundongos , Cistos/genética , Cistos/metabolismo , Eletrólitos/metabolismo , Rim/metabolismo , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Camundongos Knockout , Fatores de Transcrição/metabolismo , Ativação TranscricionalRESUMO
Mutations in the hepatocyte nuclear factor (HNF)1ß gene (HNF1B) cause autosomal dominant tubulointerstitial kidney disease, a rare and heterogeneous disease characterized by renal cysts and/or malformation, maturity-onset diabetes of the young, hypomagnesemia, and hypokalemia. The electrolyte disturbances may develop in the distal part of the nephron, which is important for fine-tuning of Mg2+ and Ca2+ reabsorption. Therefore, we aimed to study the transcriptional network directed by HNF1ß in the distal part of the nephron. We combined HNF1ß chromatin immunoprecipitation-sequencing and mRNA expression data to identify direct targets of HNF1ß in a renal distal convoluted tubule cell line (mpkDCT). Gene Ontology term pathway analysis demonstrated enrichment of cell polarity, cell-cell junction, and cytoskeleton pathways in the dataset. Genes directly and indirectly regulated by HNF1ß within these pathways included members of the apical and basolateral polarity complexes including Crumbs protein homolog 3 (Crb3), partitioning defective 6 homolog-ß (Pard6b), and LLGL Scribble cell polarity complex component 2 (Llgl2). In monolayers of mouse inner medullary collecting duct 3 cells expressing dominant negative Hnf1b, tight junction integrity was compromised, as observed by reduced transepithelial electrical resistance values and increased permeability for fluorescein (0.4 kDa) compared with wild-type cells. Expression of dominant negative Hnf1b also led to a decrease in height (30%) and an increase in surface (58.5%) of cells grown on membranes. Moreover, three-dimensional spheroids formed by cells expressing dominant negative Hnf1b were reduced in size compared with wild-type spheroids (30%). Together, these findings demonstrate that HNF1ß directs a transcriptional network regulating tight junction integrity and cell structure in the distal part of the nephron.NEW & NOTEWORTHY Genetic defects in transcription factor hepatocyte nuclear factor (HNF)1ß cause a heterogeneous disease characterized by electrolyte disturbances, kidney cysts, and diabetes. By combining RNA-sequencing and HNF1ß chromatin immunoprecipitation-sequencing data, we identified new HNF1ß targets that were enriched for cell polarity pathways. Newly discovered targets included members of polarity complexes Crb3, Pard6b, and Llgl2. Functional assays in kidney epithelial cells demonstrated decreased tight junction integrity and a loss of typical cuboidal morphology in mutant Hnf1b cells.
Assuntos
Redes Reguladoras de Genes , Fatores de Transcrição , Camundongos , Animais , Fatores de Transcrição/metabolismo , Junções Íntimas/metabolismo , Rim/metabolismo , Células Epiteliais/metabolismo , Fatores Nucleares de Hepatócito/genética , Fatores Nucleares de Hepatócito/metabolismo , Eletrólitos/metabolismo , Fator 1-beta Nuclear de Hepatócito/genéticaRESUMO
Circulating calciprotein particles (CPP), colloids of calcium, phosphate and proteins, were identified as potential drivers of the calcification process in chronic kidney disease. The present study compared CPP produced using different protocols with respect to particle morphology, composition, particle number and in vitro calcification potency. CPP were synthesized with 4.4 mM (CPP-A and B) or 6 mM (CPP-C and D) phosphate and 2.8 mM (CPP-A and B) or 10 mM (CPP-C and D) calcium, with either bovine fetuin-A (CPP-C) or fetal bovine serum (CPP-A, B and D) as a source of protein, and incubated for 7 (CPP-A2) or 14 days (CPP-B2), 12 h (CPP-C2, D2 and B1) or 30 min (CPP-D1). Particle number was determined with nanoparticle tracking and calcium content was measured in CPP preparations and to determine human vascular smooth muscle cell (hVSMC) calcification. Morphologically, CPP-C2 were the largest. Particle number did not correspond to the calcium content of CPP. Both methods of quantification resulted in variable potencies of CPP2 to calcify VSMC, with CPP-B2 as most stable inducer of hVSMC calcification. In contrast, CPP-B1 and D1 were unable to induce calcification of hVSMC, and endogenous CPP derived from pooled serum of dialysis patients were only able to calcify hVSMC to a small extent compared to CPP2.CPP synthesized using different protocols appear morphologically similar, but in vitro calcification potency is dependent on composition and how the CPP are quantified. Synthetic CPP are not comparable to endogenous CPP in terms of the calcification propensity.
Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Humanos , Cálcio/metabolismo , Calcificação Vascular/metabolismo , Calcificação Fisiológica , Fosfatos/metabolismo , Insuficiência Renal Crônica/metabolismo , alfa-2-Glicoproteína-HS/metabolismoRESUMO
BACKGROUND: Hypomagnesaemia with secondary hypocal-caemia (HSH) is a rare autosomal recessive disorder caused by pathogenic variants in TRPM6, encoding the channel-kinase transient receptor potential melastatin type 6. Patients have very low serum magnesium (Mg2+) levels and suffer from muscle cramps and seizures. Despite genetic testing, a subgroup of HSH patients remains without a diagnosis. METHODS: In this study, two families with an HSH phenotype but negative for TRPM6 pathogenic variants were subjected to whole exome sequencing. Using a complementary combination of biochemical and functional analyses in overexpression systems and patient-derived fibroblasts, the effect of the TRPM7-identified variants on Mg2+ transport was examined. RESULTS: For the first time, variants in TRPM7 were identified in two families as a potential cause for hereditary HSH. Patients suffer from seizures and muscle cramps due to magnesium deficiency and episodes of hypocalcaemia. In the first family, a splice site variant caused the incorporation of intron 1 sequences into the TRPM7 messenger RNA and generated a premature stop codon. As a consequence, patient-derived fibroblasts exhibit decreased cell growth. In the second family, a heterozygous missense variant in the pore domain resulted in decreased TRPM7 channel activity. CONCLUSIONS: We establish TRPM7 as a prime candidate gene for autosomal dominant hypomagnesaemia and secondary hypocalcaemia. Screening of unresolved patients with hypocalcaemia and secondary hypocalcaemia may further establish TRPM7 pathogenic variants as a novel Mendelian disorder.
Assuntos
Hipocalcemia , Canais de Cátion TRPM , Humanos , Magnésio , Canais de Cátion TRPM/metabolismo , Cãibra Muscular/complicações , Proteínas Serina-Treonina Quinases/metabolismoRESUMO
Digestion of dietary fibers by gut bacteria has been shown to stimulate intestinal mineral absorption [e.g., calcium (Ca2+) and magnesium (Mg2+)]. Although it has been suggested that local pH and short-chain fatty acid (SCFA) concentrations determine divalent cation absorption, the exact molecular mechanisms are still unknown. Therefore, this study aimed to determine the effects of SCFAs on intestinal Mg2+ absorption. We show that the butyrate concentration in the colon negatively correlates with serum Mg2+ levels in wildtype mice. Moreover, Na-butyrate significantly inhibited Mg2+ uptake in Caco-2 cells, while Ca2+ uptake was unaffected. Although Na-butyrate significantly lowered total ATP production rate, and resulted in increased phosphorylation of AMP-activated protein kinase (AMPK), inhibition of Mg2+ uptake by butyrate preceded these consequences. Importantly, electrophysiological examinations demonstrated that intracellular butyrate directly reduced the activity of the heteromeric Mg2+ channel complex, transient receptor potential melastatin (TRPM)6/7. Blocking cellular butyrate uptake prevented its inhibitory effect on Mg2+ uptake, demonstrating that butyrate acts intracellularly. Our work identified butyrate as novel regulator of intestinal Mg2+ uptake that works independently from metabolic regulation. This finding further highlights the role of microbial fermentation in the regulation of mineral absorption.