Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758657

RESUMO

Ultrathin topological insulator membranes are building blocks of exotic quantum matter. However, traditional epitaxy of these materials does not facilitate stacking in arbitrary orders, while mechanical exfoliation from bulk crystals is also challenging due to the non-negligible interlayer coupling therein. Here we liberate millimeter-scale films of the topological insulator Bi2Se3, grown by molecular beam epitaxy, down to 3 quintuple layers. We characterize the preservation of the topological surface states and quantum well states in transferred Bi2Se3 films using angle-resolved photoemission spectroscopy. Leveraging the photon-energy-dependent surface sensitivity, the photoemission spectra taken with 6 and 21.2 eV photons reveal a transfer-induced migration of the topological surface states from the top to the inner layers. By establishing clear electronic structures of the transferred films and unveiling the wave function relocation of the topological surface states, our work lays the physics foundation crucial for the future fabrication of artificially stacked topological materials with single-layer precision.

2.
Sci Adv ; 10(11): eadh1330, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489373

RESUMO

Rare earth elements (REEs), critical to modern industry, are difficult to separate and purify, given their similar physicochemical properties originating from the lanthanide contraction. Here, we systematically study the transport of lanthanide ions (Ln3+) in artificially confined angstrom-scale two-dimensional channels using MoS2-based building blocks in an aqueous environment. The results show that the uptake and permeability of Ln3+ assume a well-defined volcano shape peaked at Sm3+. This transport behavior is rooted from the tradeoff between the barrier for dehydration and the strength of interactions of lanthanide ions in the confinement channels, reminiscent of the Sabatier principle. Molecular dynamics simulations reveal that Sm3+, with moderate hydration free energy and intermediate affinity for channel interaction, exhibit the smallest dehydration degree, consequently resulting in the highest permeability. Our work not only highlights the distinct mass transport properties under extreme confinement but also demonstrates the potential of dialing confinement dimension and chemistry for greener REEs separation.

3.
Proc Natl Acad Sci U S A ; 121(2): e2313616121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165939

RESUMO

Emulating angstrom-scale dynamics of the highly selective biological ion channels is a challenging task. Recent work on angstrom-scale artificial channels has expanded our understanding of ion transport and uptake mechanisms under confinement. However, the role of chemical environment in such channels is still not well understood. Here, we report the anomalously enhanced transport and uptake of ions under confined MoS2-based channels that are ~five angstroms in size. The ion uptake preference in the MoS2-based channels can be changed by the selection of surface functional groups and ion uptake sequence due to the interplay between kinetic and thermodynamic factors that depend on whether the ions are mixed or not prior to uptake. Our work offers a holistic picture of ion transport in 2D confinement and highlights ion interplay in this regime.

4.
Nat Commun ; 13(1): 4579, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931691

RESUMO

Electrochemical intercalation can enable lithium extraction from dilute water sources. However, during extraction, co-intercalation of lithium and sodium ions occurs, and the response of host materials to this process is not fully understood. This aspect limits the rational materials designs for improving lithium extraction. Here, to address this knowledge gap, we report one-dimensional (1D) olivine iron phosphate (FePO4) as a model host to investigate the co-intercalation behavior and demonstrate the control of lithium selectivity through intercalation kinetic manipulations. Via computational and experimental investigations, we show that lithium and sodium tend to phase separate in the host. Exploiting this mechanism, we increase the sodium-ion intercalation energy barrier by using partially filled 1D lithium channels via non-equilibrium solid-solution lithium seeding or remnant lithium in the solid-solution phases. The lithium selectivity enhancement after seeding shows a strong correlation with the fractions of solid-solution phases with high lithium content (i.e., LixFePO4 with 0.5 ≤ x < 1). Finally, we also demonstrate that the solid-solution formation pathway depends on the host material's particle morphology, size and defect content.

5.
iScience ; 25(4): 104044, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35359810

RESUMO

Controlling the ion transport through graphene oxide (GO) membrane is challenging, particularly in the aqueous environment due to its strong swelling tendency. Fine-tuning the interlayer spacing and chemistry is critical to create highly selective membranes. We investigate the effect of single-site divalent cations in tuning GO membrane properties. Competitive ionic permeation test indicates that Cu2+ cations dominate the transport through the 2D channels of GO membrane over other cations (Mg2+/Ca2+/Co2+). Without/With the single-site M2+ modifications, pristine GO, Mg-GO, Ca-GO, and Cu-GO membranes show interlayer spacings of ∼13.6, 15.6, 14.5, and 12.3 Å in wet state, respectively. The Cu-GO membrane shows a two-fold decrease of NaCl (1 M) permeation rate comparing to pristine GO, Mg-GO, and Ca-GO membranes. In reverse osmosis tests using 1000 ppm NaCl and Na2SO4 as feeds, Cu-GO membrane shows rejection of ∼78% and ∼94%, respectively, which are 5%-10% higher than its counterpart membranes.

6.
Adv Sci (Weinh) ; 9(12): e2104857, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35187858

RESUMO

The valance of Mo is critical for FeMo cofactor in ambient ammonia synthesis. However, the valence effect of Mo has not been well studied in heterogeneous nanoparticle catalysts for electrochemical nitrogen reduction reaction (NRR) due to the dissolution of Mo as MoO42- in alkaline electrolytes. Here, a MoO2+x catalyst enriched with surface Mo6+ is reported. The Mo6+ is stabilized by a native oxide layer to prevent corrosion and its speciation is identified as (MoO3 )n clusters. This native layer with Mo6+ suppresses the hydrogen evolution significantly and promotes the activation of nitrogen as supported by both experimental characterization and theoretical calculation. The as-prepared MoO2+x catalyst shows a high ammonia yield of 3.95 µg mgcat-1 h-1 with a high Faradaic efficiency of 22.1% at -0.2 V versus reversible hydrogen electrode, which is much better than the MoO2 catalyst with Mo6+ etched away. The accuracy of experimental results for NRR is confirmed by various control experiments and quantitative isotope labeling.


Assuntos
Amônia , Nitrogênio , Catálise , Eletrodos , Hidrogênio/química , Nitrogênio/química
7.
Chem Rev ; 121(15): 9450-9501, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34213328

RESUMO

The structure, chemistry, and charge of interfaces between materials and aqueous fluids play a central role in determining properties and performance of numerous water systems. Sensors, membranes, sorbents, and heterogeneous catalysts almost uniformly rely on specific interactions between their surfaces and components dissolved or suspended in the water-and often the water molecules themselves-to detect and mitigate contaminants. Deleterious processes in these systems such as fouling, scaling (inorganic deposits), and corrosion are also governed by interfacial phenomena. Despite the importance of these interfaces, much remains to be learned about their multiscale interactions. Developing a deeper understanding of the molecular- and mesoscale phenomena at water/solid interfaces will be essential to driving innovation to address grand challenges in supplying sufficient fit-for-purpose water in the future. In this Review, we examine the current state of knowledge surrounding adsorption, reactivity, and transport in several key classes of water/solid interfaces, drawing on a synergistic combination of theory, simulation, and experiments, and provide an outlook for prioritizing strategic research directions.

8.
Nano Lett ; 20(11): 7844-7851, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33021379

RESUMO

Restacked two-dimensional (2D) materials represent a new class of membranes for water-ion separations. Understanding the interplay between the 2D membrane's structure and the constituent material's surface chemistry to its ion sieving properties is crucial for further membrane development. Here, we reveal, and tune via covalent functionalization, the structure of MoS2-based membranes. We find features on both the ∼1 nm (interlayer spacing) and ∼100 nm (mesoporous voids between layers) length scales that evolve with the hydration level. The functional groups act as permanent molecular spacers, preventing local impermeability caused by irreversible restacking and promoting the uniform rehydration of the membrane. Molecular dynamics simulations show that the choice of functional group tunes the structure of water within the MoS2 channel and consequently determines the hydrated interlayer spacing. We demonstrate that MoS2 membranes functionalized with acetic acid have consistently ∼92% rejection of Na2SO4 with a flux of ∼1.5 lm-2 hr-1 bar-1.

9.
Nat Commun ; 11(1): 3152, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561738

RESUMO

Spectrally resolved photoacoustic imaging is promising for label-free imaging in optically scattering materials. However, this technique often requires acquisition of a separate image at each wavelength of interest. This reduces imaging speeds and causes errors if the sample changes in time between images acquired at different wavelengths. We demonstrate a solution to this problem by using dual-comb spectroscopy for photoacoustic measurements. This approach enables a photoacoustic measurement at thousands of wavelengths simultaneously. In this technique, two optical-frequency combs are interfered on a sample and the resulting pressure wave is measured with an ultrasound transducer. This acoustic signal is processed in the frequency-domain to obtain an optical absorption spectrum. For a proof-of-concept demonstration, we measure photoacoustic signals from polymer films. The absorption spectra obtained from these measurements agree with those measured using a spectrophotometer. Improving the signal-to-noise ratio of the dual-comb photoacoustic spectrometer could enable high-speed spectrally resolved photoacoustic imaging.

10.
Opt Express ; 27(8): 11869-11876, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31053026

RESUMO

Si3N4 waveguides, pumped at 1550 nm, can provide spectrally smooth, broadband light for gas spectroscopy in the important 2 µm to 2.5 µm atmospheric water window, which is only partially accessible with silica-fiber based systems. By combining Er+ fiber frequency combs and supercontinuum generation in tailored Si3N4 waveguides, high signal-to-noise dual-comb spectroscopy spanning 2 µm to 2.5 µm is demonstrated. Acquired broadband dual-comb spectra of CO and CO2 agree well with database line shape models and have a spectral-signal-to-noise as high as 48/√s, showing that the high coherence between the two combs is retained in the Si3N4 supercontinuum generation. The dual-comb spectroscopy figure of merit is 6 × 106/√s, equivalent to that of all-fiber dual-comb spectroscopy systems in the 1.6 µm band. based on these results, future dual-comb spectroscopy can combine fiber comb technology with Si3N4 waveguides to access new spectral windows in a robust non-laboratory platform.

11.
Environ Sci Technol ; 53(5): 2908-2917, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30695644

RESUMO

A new method is tested in a single-blind study for detection, attribution, and quantification of methane emissions from the natural gas supply chain, which contribute substantially to annual U.S. emissions. The monitoring approach couples atmospheric methane concentration measurements from an open-path dual frequency comb laser spectrometer with meteorological data in an inversion to characterize emissions. During single-blind testing, the spectrometer is placed >1 km from decommissioned natural gas equipment configured with intentional leaks of controllable rate. Single, steady emissions ranging from 0 to 10.7 g min-1 (0-34.7 scfh) are detected, located, and quantified at three gas pads of varying size and complexity. The system detects 100% of leaks, including leaks as small as 0.96 g min-1 (3.1 scfh). It attributes leaks to the correct pad or equipment group (tank battery, separator battery, wellhead battery) 100% of the time and to the correct equipment (specific separator, tank, or wellhead) 67% of the time. All leaks are quantified to within 3.7 g min-1 (12 scfh); 94% are quantified to within 2.8 g min-1 (9 scfh). These tests are an important initial demonstration of the methodology's viability for continuous monitoring of large regions, with extension to other trace gases and industries.


Assuntos
Poluentes Atmosféricos , Gás Natural , Gases , Metano , Método Simples-Cego
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA