Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 108(6): 1750-1754, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38213120

RESUMO

Iris yellow spot virus (IYSV) poses a significant threat to dry bulb onion, Allium cepa L., production and can lead to substantial yield reductions. IYSV is transmitted by onion thrips, Thrips tabaci (Lindeman), but not via seed. Transplanted onion fields have been major early season sources of IYSV epidemics. As onion thrips tend to disperse short distances, seeded onion fields bordering transplanted onion fields may be at greater risk of IYSV infection than seeded fields isolated from transplanted ones. Additionally, seeded onion fields planted early may be at greater risk of IYSV infection than those seeded later. In a 2-year study in New York, we compared IYSV incidence and onion thrips populations in seeded onion fields relative to their proximity to transplanted onion fields. In a second study, we compared IYSV incidence in onion fields with either small or large plants during midseason. Results showed similar IYSV incidence and onion thrips populations in seeded onion fields regardless of their proximity to transplanted onion fields, while IYSV incidence was over four times greater in large onion plants than in small ones during midseason. These findings suggest a greater risk of onion thrips-mediated IYSV infection in onion fields with large plants compared with small ones during midseason and that proximity of seeded fields to transplanted ones is a poor indicator of IYSV risk. Our findings on IYSV spread dynamics provided valuable insights for developing integrated pest and disease management strategies for New York onion growers.


Assuntos
Cebolas , Doenças das Plantas , Tisanópteros , Cebolas/virologia , Doenças das Plantas/virologia , New York , Animais , Tisanópteros/virologia , Tisanópteros/fisiologia , Insetos Vetores/virologia
2.
Plant Dis ; 108(2): 398-406, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37622276

RESUMO

Onion thrips, Thrips tabaci (Lindeman), transmits iris yellow spot virus (IYSV) and is one of the most important pests of Allium crops. IYSV is a member of the species Tospovirus iridimaculaflavi in the genus Orthotospovirus of the family Tospoviridae. This virus typically reduces overall onion bulb quality and weight but can also prematurely kill onion plants. IYSV is neither seed nor mechanically transmitted. Onion fields are typically established via seeds and transplants. A decade ago, onion thrips tended to colonize transplanted fields before seeded fields because plants in transplanted fields were larger and more attractive to thrips than smaller onions in seeded fields. Therefore, we hypothesized that the incidence of IYSV in transplanted fields would be detected early in the season and be spatially aggregated, whereas IYSV would be absent from seeded fields early in the season and initial epidemic patterns would be spatially random. In 2021 and 2022, IYSV incidence and onion thrips populations were quantified in 12 onion fields (four transplanted fields and eight seeded fields) in New York. Fields were scouted four times throughout the growing season (n = 96 samples), and a geospatial and temporal analysis of aggregation and incidence was conducted to determine spatiotemporal patterns in each field type. Results indicated that spatial patterns of IYSV incidence and onion thrips populations were similar early in the season, indicating that transplanted onion fields are no longer the dominant early-season source of IYSV in New York. These findings suggest the need to identify other important early-season sources of IYSV that impact New York onion fields.


Assuntos
Tisanópteros , Tospovirus , Animais , Cebolas , New York , Doenças das Plantas , Sementes
3.
Plant Dis ; 107(5): 1310-1315, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36324201

RESUMO

Alternaria leaf blight and head rot is an important disease of broccoli and other cole crops. With no resistant host varieties, fungicides are utilized to manage this disease. However, anecdotal evidence suggests that, in southeastern U.S. broccoli-producing states, there is a loss of disease control through the use of quinone outside inhibitor (QoI) fungicides. To understand why there is a reduced sensitivity to QoI fungicides in these states, we isolated Alternaria spp. from symptomatic lesions on cole crops from Georgia and Virginia (two states with observations of loss of fungicide sensitivity) as well as New York (a state with no observations of loss of fungicide sensitivity). Using multilocus sequencing and phylogenetic analysis, we identified two species, Alternaria brassicicola and A. japonica. Whereas A. brassicicola was isolated in all states, A. japonica was only isolated in Georgia. Next, we wanted to determine the sensitivity of these isolates to azoxystrobin-an active ingredient in some QoI fungicides-by estimating the effective concentration at which only 50% of spores germinate (EC50). The EC50 of A. brassicicola ranged from 0.01 to 0.17 ppm, whereas that of A. japonica was 8.1 to 28.1 ppm. None of the known target-site mutations that confer resistance to QoI fungicides were identified during screening of either species. A. japonica was first reported on the east coast of the United States in 2020 in South Carolina. The substantially higher EC50 value suggests that its emergence in the southeastern United States may play at least a part in the observed loss of disease control. However, further in planta and field studies are needed to thoroughly test this hypothesis.


Assuntos
Fungicidas Industriais , Estados Unidos , Fungicidas Industriais/farmacologia , Alternaria/genética , Filogenia , New York , Georgia
4.
Plant Dis ; 106(5): 1381-1391, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34798786

RESUMO

Stemphylium leaf blight (SLB) caused by Stemphylium vesicarium is the dominant foliar disease affecting large-scale onion production in New York. The disease is managed by fungicides, but control failures are prevalent and are attributed to fungicide resistance. Little is known of the relative role of inoculum sources in initiation and spread of SLB epidemics. Plate testing of 28 commercially available organic onion seedlots from 2016 and 2017 did not detect S. vesicarium. This finding suggests that although S. vesicarium has been reported as seed-transmitted, this is unlikely to be a significant inoculum source in commercially available organic seed lots and even less so in fungicide-treated seed used to establish conventional fields. The spatial and spatiotemporal dynamics of SLB epidemics in six onion fields were evaluated along linear transects in 2017 and 2018. Average SLB incidence increased from 0 to 100% throughout the cropping seasons with an average final lesion length of 28.3 cm. Disease progress was typical of a polycyclic epidemic and the logistic model provided the best fit to 83.3% of the datasets. Spatial patterns were better described by the beta-binomial than binomial distribution in half of the datasets (50%) and random patterns were more frequently observed by the index of dispersion (59%). Geostatistical analyses also found a low frequency of datasets with aggregation (60%). Spatiotemporal analysis of epidemics detected that the aggregation was influenced by disease incidence. However, diseased units were not frequently associated with the previous time period according to the spatiotemporal association function of spatial analyses by distance indices. Variable spatial patterns suggested mixed inoculum sources dependent upon location, and likely an external inoculum source at the sampling scale used in this study. A small-plot replicated trial was also conducted in each of 2 years to quantify the effect of S. vesicarium-infested onion residue on SLB epidemics in a field isolated from other onion fields. SLB incidence was significantly reduced in plots without residue compared with those in which residue remained on the soil surface. Burial of infested residue also significantly reduced epidemic progress in 1 year. The effect of infested onion residue on SLB epidemics in the subsequent onion crop suggests rotation or residue management may have a substantial effect on epidemics. However, the presence of an inoculum source external to fields in onion production regions, as indicated by a lack of spatial aggregation, may reduce the efficacy of in-field management techniques.


Assuntos
Fungicidas Industriais , Fungos Mitospóricos , New York , Cebolas , Doenças das Plantas
5.
Plant Dis ; 105(12): 3780-3794, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34546780

RESUMO

Stemphylium leaf blight (SLB), caused by Stemphylium vesicarium, is a foliar disease of onion worldwide, and has recently become an important disease in the northeastern United States and Ontario, Canada. The symptoms begin as small, tan to brown lesions on the leaves that can progress to defoliate plants. Crop loss occurs through reduced photosynthetic area, resulting in smaller, lower-quality bulbs. Leaf necrosis caused by SLB also can compromise bulb storage, as green leaves are required for the uptake of sprout inhibitors applied prior to harvest. The pathogen can overwinter on infested onion residue and infected volunteer plants. Asymptomatic weedy hosts near onion fields may also be a source of inoculum. Production of ascospores of the teleomorph (Pleospora allii) peaks in early spring in northeastern North America, often before the crop is planted, and declines rapidly as daily mean air temperatures rise. Conidia are usually present throughout the growing season. Application of fungicides is a standard practice for management of the complex of fungi that can cause foliar diseases of onion in this region. Recent assessments have shown that populations of S. vesicarium in New York and Ontario are resistant to at least three single-site mode-of-action fungicides. Three disease prediction systems have been developed and evaluated that may enable growers to reduce the frequency and/or number of fungicide applications, but the loss of efficacious fungicides due to resistance development within S. vesicarium populations threatens sustainability. The lack of commercially acceptable onion cultivars with sufficient resistance to reduce the number of fungicides for SLB also limits the ability to manage SLB effectively. Integrated disease management strategies for SLB are essential to maintain profitable, sustainable onion production across eastern North America.


Assuntos
Fungicidas Industriais , Cebolas , Fungicidas Industriais/farmacologia , New York , Ontário , Doenças das Plantas
6.
Plant Dis ; 103(12): 3083-3092, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31596693

RESUMO

A complex of foliar diseases affects onion production in New York, including Botrytis leaf blight (Botrytis squamosa), purple blotch (Alternaria porri), Stemphylium leaf blight (SLB; Stemphylium vesicarium), and downy mildew (Peronospora destructor). Surveys were conducted in 2015 and 2016 to evaluate the cause of severe premature foliar dieback in New York onion fields. SLB was the most prevalent disease among fields with the greatest incidence, surpassing downy mildew, purple blotch, and Botrytis leaf blight. Sequencing of the internal transcribed spacer region of ribosomal DNA and the glyceraldedyhe-3-phosphate dehydrogenase and calmodulin genes identified S. vesicarium as the species most commonly associated with SLB. S. vesicarium was typically associated with a broad range of necrotic symptoms but, most commonly, dieback of leaf tips and asymmetric lesions that often extended over the entire leaf. Because of the intensive use of fungicides for foliar disease control in onion crops in New York, the sensitivity of S. vesicarium populations to various fungicides with site-specific modes of action was evaluated. Sensitivity of S. vesicarium isolates collected in 2016 to the quinone outside inhibitor (QoI) fungicide, azoxystrobin, was tested using a conidial germination assay. Isolates representing a broad range of QoI sensitivities were selected for sequencing of the cytochrome b gene to evaluate the presence of point mutations associated with insensitivity to azoxystrobin. The G143A mutation was detected in all 74 S. vesicarium isolates with an azoxystrobin-insensitive phenotype (effective concentrations reducing conidial germination by 50%, EC50 = 0.2 to 46.7 µg of active ingredient [a.i.]/ml) and was not detected in all 31 isolates with an azoxystrobin-sensitive phenotype (EC50 = 0.01 to 0.16 µg a.i./ml). The G143A mutation was also associated with insensitivity to another QoI fungicide, pyraclostrobin. Sensitivity to other selected fungicides commonly used in onion production in New York was evaluated using a mycelial growth assay and identified isolates with insensitivity to boscalid, cyprodinil, and pyrimethanil, but not difenoconazole. The frequency of isolates sensitive to iprodione, fluxapyroxad, and fluopyram was high (93.5 to 93.6%). This article discusses the emergence of SLB as dominant in the foliar disease complex affecting onion in New York and the complexities of management posed by resistance to fungicides with different modes of action.


Assuntos
Ascomicetos , Farmacorresistência Fúngica , Fungicidas Industriais , Cebolas , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , New York , Cebolas/microbiologia
7.
J Econ Entomol ; 102(1): 115-20, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19253625

RESUMO

Contarinia nasturtii (Kieffer) (Diptera: Cecidomyiidae), a common insect pest in Europe and a new invasive pest in North America, causes severe damage to cruciferous crops. In the United States, C. nasturtii was first reported in western New York in 2004. From 2005 to 2007, field surveys were conducted in western New York to investigate the occurrence of C. nasturtii in weeds that might serve as a reservoir for this pest. The results indicate that 12 cruciferous weed species were found in and around commercial vegetable crucifer plantings, and C. nasturtii emergence was detected from most of them. The number of C. nasturtii that emerged from the weeds was low and varied by species, year, and the timing of sampling. Peak emergence from weeds in fallow fields occurred in June. Nonchoice tests in the laboratory showed that significantly fewer larvae were found on cruciferous weeds than on cauliflower plants, although C. nasturtii could lay eggs on the weeds. When weeds and cauliflower plants were simultaneously exposed to C. nasturtii adults for egg laying (choice tests), 97.3% of the C. nasturtii larvae were found on the cauliflower plants 8 d after oviposition, 2.7% on Sinapis arvensis L., and none on the other five weed species tested. Our results suggest that cruciferous weeds can serve as alternative host plants of C. nasturtii but are less suitable than cauliflower. A method of detecting C. nasturtii on weeds and control of C. nasturtii through weed management are discussed.


Assuntos
Brassicaceae/parasitologia , Dípteros/fisiologia , Oviposição , Animais , New York , Controle de Pragas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA