Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
POCUS J ; 6(1): 22-28, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36895495

RESUMO

Introduction: Gamification engages learners and has successfully taught point-of-care ultrasound (POCUS) to residents and fellows. Yet ultrasound (US) curricula in undergraduate medical education remains limited. This study assessed a gamification model integrating US, anatomy, physiology, physical examination, and radiology created for preclinical medical students as compared with traditional didactic education. Methods: Twenty first-year medical students participated in a session on neck and thyroid material. Students were randomly assigned to a game or non-game group. Game students participated in games incorporating thyroid US with exam maneuvers, other imaging modalities, physiology, and pathology. Non-game students were taught the same material with an instructor. Students were assessed with a pretest and immediate and delayed post-tests. Group differences and scores were assessed using t-tests. A Likert scale evaluated learners' opinions of the educational experience. Results: The game group performed better than the non-game group on the immediate post-test (p = 0.007, CI = [0.0305, ∞]). There was no significant difference between the groups on the delayed post-test (p = 0.726, CI = [-0.120, ∞]). Students in both groups felt more confident in their knowledge of the material, and all students in the game group agreed that the games encouraged teamwork. Most (9/10) stated the games allowed them to learn the material more effectively and would like to see more gamification (8/10). Conclusion: This US education model incorporating gamification for preclinical medical students promotes teamwork and is as effective for learning material than a traditional learning model. Students additionally convey a positive attitude towards gamification.

2.
Neuron ; 108(5): 984-998.e9, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-32949502

RESUMO

Hippocampal spiking sequences encode external stimuli and spatiotemporal intervals, linking sequential experiences in memory, but the dynamics controlling the emergence and stability of such diverse representations remain unclear. Using two-photon calcium imaging in CA1 while mice performed an olfactory working-memory task, we recorded stimulus-specific sequences of "odor-cells" encoding olfactory stimuli followed by "time-cells" encoding time points in the ensuing delay. Odor-cells were reliably activated and retained stable fields during changes in trial structure and across days. Time-cells exhibited sparse and dynamic fields that remapped in both cases. During task training, but not in untrained task exposure, time-cell ensembles increased in size, whereas odor-cell numbers remained stable. Over days, sequences drifted to new populations with cell activity progressively converging to a field and then diverging from it. Therefore, CA1 employs distinct regimes to encode external cues versus their variable temporal relationships, which may be necessary to construct maps of sequential experiences.


Assuntos
Região CA1 Hipocampal/fisiologia , Sinais (Psicologia) , Memória de Curto Prazo/fisiologia , Odorantes , Olfato/fisiologia , Potenciais de Ação , Animais , Região CA1 Hipocampal/química , Região CA1 Hipocampal/citologia , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Olfato/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA