RESUMO
Nickel phosphides are of particular interest because they are highly active and stable catalysts for petroleum/biorefinery and hydrogen production. Despite their significant catalytic potential, synthesizing various phase-pure nickel phosphide nanoparticles of uniform size remains a challenge. In this work, we develop a robust trioctylphosphine (TOP)-mediated route to make highly uniform phase-pure Ni12P5, Ni2P, and Ni5P4 nanoparticles. The synthetic route forms amorphous Ni70P30 nanoparticle intermediates. The reactions can be stopped at the amorphous stage when amorphous particles are desired. The amount of P incorporation can be controlled by varying the ratio of TOP to Ni(II). The mechanism for composition control involves the competition of the kinetics of two processes: the addition of the reduced Ni and the incorporation of P into Ni. Uniform Ni70P30 amorphous nanoparticles can be generated at a high TOP-to-Ni(II) ratio, where the P incorporation kinetics is made to dominate. Ni70P30 can later be transformed into phase-pure Ni12P5, Ni2P, and Ni5P4 nanocrystals of uniform size. The transformation can be controlled precisely by modulating the temperature. A UV-vis study coupled with theoretical modeling reveals Ni(0)-TOPx complexes along the synthetic path. This approach may be expanded to create other metal compounds, potentially enabling the synthesis of uniform nanoparticles of a greater variety.
RESUMO
Metal phosphide-containing materials have emerged as a potential candidate of nonprecious metal-based catalysts for alkaline oxygen evolution reaction (OER). While it is known that metal phosphide undergoes structural evolution, considerable debate persists regarding the effects of dynamics on the surface activation and morphological stability of the catalysts. In this study, we synthesize NiP x -FeO x core-shell nanocatalysts with an amorphous NiP x core designed for enhanced OER activity. Using ex situ X-ray absorption spectroscopy, we elucidate the local structural changes as a function of the cyclic voltammetry cycles. Our studies suggest that the presence of corner-sharing octahedra in the FeO x shell improves structural rigidity through interlayer cross-linking, thereby inhibiting the diffusion of OH-/H2O. Thus, the FeO x shell preserves the amorphous NiP x core from rapid oxidation to Ni3(PO4)2 and Ni(OH)2. On the other hand, the incorporation of Ni from the core into the FeO x shell facilitates absorption of hydroxide ions for OER. As a result, Ni/Fe(OH) x at the surface oxidizes to the active γ-(oxy)hydroxide phase under the applied potentials, promoting OER. This intriguing synergistic behavior holds significance as such a synthetic route involving the FeO x shell can be extended to other systems, enabling manipulation of surface adsorption and diffusion of hydroxide ions. These findings also demonstrate that nanomaterials with core-shell morphologies can be tuned to leverage the strength of each metallic component for improved electrochemical activities.
RESUMO
Bimetallic alloys made from immiscible elements are characterized by their tendency to segregate on the macroscopic scale, but their behavior is known to change at the nanoscale. Here, we demonstrate that in the Ru-In system, In atoms preferentially decorate the surface of 6 nm Ru nanoparticles, forming Ru-In superficial immiscible alloys. This surface decoration dramatically affects the catalytic performance of the system, even at small atomic fractions of In added to Ru. The interfaces between Ru and In enabled unexplored methanol productivity from CO2 hydrogenation, which outperformed not only the individual constituents but also ordered RuIn3 intermetallic alloys. Our work highlights that the formation of superficial immiscible alloys could offer new insights into the understanding and design of heterogeneous catalysts.
RESUMO
Multicomponent catalysts can be designed to synergistically combine reaction intermediates at interfacial active sites, but restructuring makes systematic control and understanding of such dynamics challenging. We here unveil how reducibility and mobility of indium oxide species in Ru-based catalysts crucially control the direct, selective conversion of CO2 to ethanol. When uncontrolled, reduced indium oxide species occupy the Ru surface, leading to deactivation. With the addition of steam as a mild oxidant and using porous polymer layers to control In mobility, Ru-In2O3 interface sites are stabilized, and ethanol can be produced with superior overall selectivity (70 %, rest CO). Our work highlights how engineering of bifunctional active ensembles enables cooperativity and synergy at tailored interfaces, which unlocks unprecedented performance in heterogeneous catalysts.
RESUMO
Supported noble metal catalysts, ubiquitous in chemical technology, often undergo dynamic transformations between reduced and oxidized states-which influence the metal nuclearities, oxidation states, and catalytic properties. In this investigation, we report the results of in situ X-ray absorption spectroscopy, scanning transmission electron microscopy, and other physical characterization techniques, bolstered by density functional theory, to elucidate the structural transformations of a set of MgO-supported palladium catalysts under oxidative treatment conditions. As the calcination temperature increased, the as-synthesized supported metallic palladium nanoparticles underwent oxidation to form palladium oxides (at approximately 400 °C), which, at approximately 500 °C, were oxidatively fragmented to form mixtures of atomically dispersed palladium cations. The data indicate two distinct types of atomically dispersed species: palladium cations located at MgO steps and those embedded in the first subsurface layer of MgO. The former exhibit significantly higher (>500 times) catalytic activity for ethylene hydrogenation than the latter. The results pave the way for designing highly active and stable supported palladium hydrogenation catalysts with optimized metal utilization.
RESUMO
The reduction of CO2 is known to promote increased alkene yields from alkane dehydrogenations when the reactions are cocatalyzed. The mechanism of this promotion is not understood in the context of catalyst active-site environments because CO2 is amphoteric, and even general aspects of the chemistry, including the significance of competing side reactions, differ significantly across catalysts. Atomically dispersed chromium cations stabilized in highly siliceous MFI zeolite are shown here to enable the study of the role of parallel CO2 reduction during ethylene-selective ethane dehydrogenation. Based on infrared spectroscopy and X-ray absorption spectroscopy data interpreted through calculations using density functional theory (DFT), the synthesized catalyst contains atomically dispersed Cr cations stabilized by silanol nests in micropores. Reactor studies show that cofeeding CO2 increases stable ethylene-selective ethane dehydrogenation rates over a wide range of partial pressures. Operando X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine-structure (EXAFS) spectra indicate that during reaction at 650 °C the Cr cations maintain a nominal 2+ charge and a total Cr-O coordination number of approximately 2. However, CO2 reduction induces a change, correlated with the CO2 partial pressure, in the population of two distinct Cr-O scattering paths. This indicates that the promotional effect of parallel CO2 reduction can be attributed to a subtle change in Cr-O bond lengths in the local coordination environment of the active site. These insights are made possible by simultaneously fitting multiple EXAFS spectra recorded in different reaction conditions; this novel procedure is expected to be generally applicable for interpreting operando catalysis EXAFS data.
RESUMO
Strong metal-support interactions (SMSIs) are well-known in the field of heterogeneous catalysis to induce the encapsulation of platinum (Pt) group metals by oxide supports through high temperature H2 reduction. However, demonstrations of SMSI overlayers have largely been limited to reducible oxides, such as TiO2 and Nb2O5. Here, we show that the amorphous native surface oxide of plasmonic aluminum nanocrystals (AlNCs) exhibits SMSI-induced encapsulation of Pt following reduction in H2 in a Pt structure dependent manner. Reductive treatment in H2 at 300 °C induces the formation of an AlOx SMSI overlayer on Pt clusters, leaving Pt single-atom sites (Ptiso) exposed available for catalysis. The remaining exposed Ptiso species possess a more uniform local coordination environment than has been observed on other forms of Al2O3, suggesting that the AlOx native oxide of AlNCs presents well-defined anchoring sites for individual Pt atoms. This observation extends our understanding of SMSIs by providing evidence that H2-induced encapsulation can occur for a wider variety of materials and should stimulate expanded studies of this effect to include nonreducible oxides with oxygen defects and the presence of disorder. It also suggests that the single-atom sites created in this manner, when combined with the plasmonic properties of the Al nanocrystal core, may allow for site-specific single-atom plasmonic photocatalysis, providing dynamic control over the light-driven reactivity in these systems.
RESUMO
Soft-oxidant-assisted methane coupling has emerged as a promising pathway to upgrade methane from natural gas sources to high-value commodity chemicals, such as ethylene, at selectivities higher than those associated with oxidative (O2) methane coupling (OCM). To date, few studies have reported investigations into the electronic structure and the microscopic physical structure of catalytic active sites present in the binary metal oxide catalyst systems that are known to be effective for this reaction. Correlating the catalyst activity to specific active site structures and electronic properties is an essential aspect of catalyst design. Here, we used X-ray absorption spectroscopy at the Ca K-edge to ascertain the most probable local environment of Ca in the ZnO-supported Ca oxide catalysts. These catalysts are shown here to be active for N2O-assisted methane coupling (N2O-OCM) and have previously been reported to be active for CO2-assisted methane coupling (CO2-OCM). X-ray absorption near edge structure features at multiple Ca loadings are interpreted through simulated spectra derived from ab initio full multiple scattering calculations. These simulations included consideration of CaO structures organized in multiple spatial arrangements-linear, planar, and cubic-with separate analyses of Ca atoms in the surfaces and bulk of the three-dimensional structures. The morphology of the oxide clusters was found to influence the various regions of the X-ray absorption spectrum differently. Experiment and theory show that for low-Ca-loading catalysts (≤1 mol %), which contain sites particularly active for methane coupling, Ca primarily exists in an oxidized state that is consistent with the coordination environment of Ca ions in one- and two-dimensional clusters. In addition to their unique nanoscale structures, the spectra also indicate that these clusters have varying degrees of undercoordinated surface Ca atoms that could further influence their catalytic activities. The local Ca structure was correlated to methane coupling activity from N2O-OCM and previously reported CO2-OCM reactor studies. This study provides a unique perspective on the relationship between the catalyst physical and electronic structure and active sites for soft-oxidant-assisted methane coupling, which can be used to inform future catalyst development.
RESUMO
Electrolyte cations can have significant effects on the kinetics and selectivity of electrocatalytic reactions. We show an atypical mechanism through which electrolyte cations can impact electrocatalyst performanceâdirect incorporation of the cation into the oxide electrocatalyst lattice. We investigate the transformations of copper electrodes in alkaline electrochemistry through operando X-ray absorption spectroscopy in KOH and Ba(OH)2 electrolytes. In KOH electrolytes, both the near-edge structure and extended fine-structure agree with previous studies; however, the X-ray absorption spectra vary greatly in Ba(OH)2 electrolytes. Through a combination of electronic structure modeling, near-edge simulation, and postreaction characterization, we propose that Ba2+ cations are directly incorporated into the lattice and form an ordered BaCuO2 phase at potentials more oxidizing than 200 mV vs the normal hydrogen electrode (NHE). BaCuO2 formation is followed by further oxidation to a bulk Cu3+-like BaxCuyOz phase at 900 mV vs NHE. Additionally, during reduction in Ba(OH)2 electrolyte, we find both Cu-O bonds and Cu-Ba scattering persist at potentials as low as -400 mV vs NHE. To our knowledge, this is the first evidence for direct oxidative incorporation of an electrolyte cation into the bulk lattice to form a mixed oxide electrode. The oxidative incorporation of electrolyte cations to form mixed oxides could open a new route for the in situ formation of active and selective oxidation electrocatalysts.
RESUMO
Sustainable production of rare earth elements (REEs) is critical for technologies needed for climate change mitigation, including wind turbines and electric vehicles. However, separation technologies currently used in REE production have large environmental footprints, necessitating more sustainable strategies. Aqueous, affinity-based separations are examples of such strategies. To make these technologies feasible, it is imperative to connect aqueous ligand structure to ligand selectivity for individual REEs. As a step toward this goal, we analyzed the extended X-ray absorption fine structure (EXAFS) of four lanthanides (La, Ce, Pr, and Nd) complexed by a common REE chelator, ethylenediaminetetraacetic acid (EDTA) to determine the aqueous-phase structure. Reference structures from density functional theory (DFT) were used to help fit the EXAFS spectra. We found that all four Ln-EDTA coordination complexes formed 9-coordinate structures with 6 coordinating atoms from EDTA (4 carboxyl oxygen atoms and 2 nitrogen atoms) and 3 oxygen atoms from water molecules. All EXAFS fits were of high quality (R-factor < 0.02) and showed decreasing average first-shell coordination distance across the series (2.62-2.57 Å from La-Nd), in agreement with DFT (2.65-2.56 Å from La-Nd). The insights determined herein will be useful in the development of ligands for sustainable rare earth elements (REE) separation technologies.
RESUMO
This paper presents software for calculating the optimal mass of samples with complex compositions (e.g. supported metal catalysts) for X-ray absorption spectroscopy (XAS) and scattering measurements. The ability to calculate the sample mass and other relevant parameters needed for an XAS measurement allows experimentalists to be better prepared in terms of detector selection, energy range of scan and overall time needed to complete the measurement, thus increasing efficiency. CatMass builds on existing sample mass calculators allowing users to determine the optimum sample preparation, collection geometry, usable energy range for a scan and approximate edge step of the absorption event. Visualization tools present the absorption calculation results in a format familiar to XAS experimentalists, with the added ability to save calculations and plots for future reference or recalculation. CatMass is a program broadly applicable in catalysis and is helpful for users with complex samples due to composition/stoichiometry or multiple competing elements.
RESUMO
Understanding the dynamic structural evolution of supported metal clusters under reaction conditions is crucial to develop structure reactivity relations. Here, we followed the structure of different size Rh clusters supported on Al2 O3 using in situ/operando spectroscopy and ex situ aberration-corrected electron microscopy. We report a dynamic evolution of rhodium clusters into thermally stable isolated single atoms upon exposure to oxygen and during CO oxidation. Rh clusters partially disperse into single atoms at room temperature and the extent of dispersion increases as the Rh size decreases and as the reaction temperature increases. A strong correlation is found between the extent of dispersion and the CO oxidation kinetics. More importantly, dispersing Rh clusters into single atoms increases the activity at room temperature by more than two orders of magnitude due to the much lower activation energy on single atoms (40 vs. 130â kJ/mol). This work demonstrates that the structure and reactivity of small Rh clusters are very sensitive to the reaction environment.
RESUMO
Single atoms of platinum group metals on CeO2 represent a potential approach to lower precious metal requirements for automobile exhaust treatment catalysts. Here we show the dynamic evolution of two types of single-atom Pt (Pt1) on CeO2, i.e., adsorbed Pt1 in Pt/CeO2 and square planar Pt1 in PtATCeO2, fabricated at 500 °C and by atom-trapping method at 800 °C, respectively. Adsorbed Pt1 in Pt/CeO2 is mobile with the in situ formation of few-atom Pt clusters during CO oxidation, contributing to high reactivity with near-zero reaction order in CO. In contrast, square planar Pt1 in PtATCeO2 is strongly anchored to the support during CO oxidation leading to relatively low reactivity with a positive reaction order in CO. Reduction of both Pt/CeO2 and PtATCeO2 in CO transforms Pt1 to Pt nanoparticles. However, both catalysts retain the memory of their initial Pt1 state after reoxidative treatments, which illustrates the importance of the initial single-atom structure in practical applications.
RESUMO
Research interest in single-atom catalysts (SACs) has been continuously increasing. However, the lack of understanding of the dynamic behaviors of SACs during applications hinders catalyst development and mechanistic understanding. Herein, we report on the evolution of active sites over Pd/TiO2-anatase SAC (Pd1/TiO2) in the reverse water-gas shift (rWGS) reaction. Combining kinetics, in situ characterization, and theory, we show that at T ≥ 350 °C, the reduction of TiO2 by H2 alters the coordination environment of Pd, creating Pd sites with partially cleaved Pd-O interfacial bonds and a unique electronic structure that exhibit high intrinsic rWGS activity through the carboxyl pathway. The activation by H2 is accompanied by the partial sintering of single Pd atoms (Pd1) into disordered, flat, â¼1 nm diameter clusters (Pdn). The highly active Pd sites in the new coordination environment under H2 are eliminated by oxidation, which, when performed at a high temperature, also redisperses Pdn and facilitates the reduction of TiO2. In contrast, Pd1 sinters into crystalline, â¼5 nm particles (PdNP) during CO treatment, deactivating Pd1/TiO2. During the rWGS reaction, the two Pd evolution pathways coexist. The activation by H2 dominates, leading to the increasing rate with time-on-stream, and steady-state Pd active sites similar to the ones formed under H2. This work demonstrates how the coordination environment and nuclearity of metal sites on a SAC evolve during catalysis and pretreatments and how their activity is modulated by these behaviors. These insights on SAC dynamics and the structure-function relationship are valuable to mechanistic understanding and catalyst design.
RESUMO
Quick-scanning X-ray absorption fine structure (QXAFS) measurements were used to characterize the exchanges of ethylene and CO ligands in a zeolite HY-supported single-site Rh complex at a sampling rate of 1.0 Hz. The two ligands were reversibly exchanged on the rhodium, with quantitative results determined for the C2H4-for-CO exchange that are consistent with a first-order process. The apparent rate constant for the exchange decreased with increasing temperature. Fourier-transform infrared spectra characterizing the C2H4 sorbed in the zeolite showed that the amount decreased with increasing temperature, consistent with the decrease in the exchange rate with increasing temperature. The results, illustrating the dynamics of ligand exchanges on a single-site supported metal catalyst, demonstrate the broad emerging applicability of the QXAFS technique for characterizing the dynamics of reactive intermediates on catalysts.
RESUMO
Atomically dispersed metal catalysts offer the advantages of efficient metal utilization and high selectivities for reactions of technological importance. Such catalysts have been suggested to be strong candidates for dry reforming of methane (DRM), offering prospects of high selectivity for synthesis gas without coke formation, which requires ensembles of metal sites and is a challenge to overcome in DRM catalysis. However, investigations of the structures of isolated metal sites on metal oxide supports under DRM conditions are lacking, and the catalytically active sites remain undetermined. Data characterizing the DRM reaction-driven structural evolution of a cerium oxide-supported catalyst, initially incorporating atomically dispersed platinum, and the corresponding changes in catalyst performance are reported. X-ray absorption and infrared spectra show that the reduction and agglomeration of isolated cationic platinum atoms to form small platinum clusters/nanoparticles are necessary for DRM activity. Density functional theory calculations of the energy barriers for methane dissociation on atomically dispersed platinum and on platinum clusters support these observations. The results emphasize the need for in-operando experiments to assess the active sites in such catalysts. The inferences about the catalytically active species are suggested to pertain to a broad class of catalytic conversions involving the rate-limiting dissociation of light alkanes.
RESUMO
A mixed-valence oxotrimer metal-organic framework (MOF), Ni-MIL-127, with a fully coordinated nickel atom and two iron atoms in the inorganic node, generates a missing linker defect upon thermal treatment in helium (>473 K) to engender an open coordination site on nickel which catalyzes propylene oligomerization devoid of any cocatalysts or initiators. This catalyst is stable for â¼20 h on stream at 500 kPa and 473 K, unprecedented for this chemistry. The number of missing linkers on synthesized and activated Ni-MIL-127 MOFs is quantified using temperature-programmed oxidation, 1H nuclear magnetic resonance spectroscopy, and X-ray absorption spectroscopy to be â¼0.7 missing linkers per nickel; thus, a majority of Ni species in the MOF framework catalyze propylene oligomerization. In situ NO titrations under reaction conditions enumerate â¼62% of the nickel atoms as catalytically relevant to validate the defect density upon thermal treatment. Propylene oligomerization rates on Ni-MIL-127 measured at steady state have activation energies of 55-67 kJ mol-1 from 448 to 493 K and are first-order in propylene pressures from 5 to 550 kPa. Density functional theory calculations on cluster models of Ni-MIL-127 are employed to validate the plausibility of the missing linker defect and the Cossee-Arlman mechanism for propylene oligomerization through comparisons between apparent activation energies from steady-state kinetics and computation. This study illustrates how MOF precatalysts engender defective Ni species which exhibit reactivity and stability characteristics that are distinct and can be engineered to improve catalytic activity for olefin oligomerization.
RESUMO
Stable catalysts are essential to address energy and environmental challenges, especially for applications in harsh environments (for example, high temperature, oxidizing atmosphere and steam). In such conditions, supported metal catalysts deactivate due to sintering-a process where initially small nanoparticles grow into larger ones with reduced active surface area-but strategies to stabilize them can lead to decreased performance. Here we report stable catalysts prepared through the encapsulation of platinum nanoparticles inside an alumina framework, which was formed by depositing an alumina precursor within a separately prepared porous organic framework impregnated with platinum nanoparticles. These catalysts do not sinter at 800 °C in the presence of oxygen and steam, conditions in which conventional catalysts sinter to a large extent, while showing similar reaction rates. Extending this approach to Pd-Pt bimetallic catalysts led to the small particle size being maintained at temperatures as high as 1,100 °C in air and 10% steam. This strategy can be broadly applied to other metal and metal oxides for applications where sintering is a major cause of material deactivation.
Assuntos
Nanopartículas Metálicas , Platina , Temperatura , Vapor , Óxido de AlumínioRESUMO
Atomically dispersed metals on metal oxide supports are a rapidly growing class of catalysts. Developing an understanding of where and how the metals are bonded to the supports is challenging because support surfaces are heterogeneous, and most reports lack a detailed consideration of these points. Herein, we report two atomically dispersed CO oxidation catalysts having markedly different metal-support interactions: platinum in the first layer of crystalline MgO powder and platinum in the second layer of this support. Structural models have been determined on the basis of data and computations, including those determined by extended X-ray absorption fine structure and X-ray absorption near edge structure spectroscopies, infrared spectroscopy of adsorbed CO, and scanning transmission electron microscopy. The data demonstrate the transformation of surface to subsurface platinum as the temperature of sample calcination increased. Catalyst performance data demonstrate the lower activity but greater stability of the subsurface platinum than of the surface platinum.
RESUMO
The electrochemical nitrate reduction reaction (NO3RR) on titanium introduces significant surface reconstruction and forms titanium hydride (TiHx, 0 < x ≤ 2). With ex situ grazing-incidence X-ray diffraction (GIXRD) and X-ray absorption spectroscopy (XAS), we demonstrated near-surface TiH2 enrichment with increasing NO3RR applied potential and duration. This quantitative relationship facilitated electrochemical treatment of Ti to form TiH2/Ti electrodes for use in NO3RR, thereby decoupling hydride formation from NO3RR performance. A wide range of NO3RR activity and selectivity on TiH2/Ti electrodes between -0.4 and -1.0 VRHE was observed and analyzed with density functional theory (DFT) calculations on TiH2(111). This work underscores the importance of relating NO3RR performance with near-surface electrode structure to advance catalyst design and operation.