Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260455

RESUMO

Epigenetic control of cellular transcription and phenotype is influenced by changes in the cellular microenvironment, yet how mechanical cues from these microenvironments precisely influence epigenetic state to regulate transcription remains largely unmapped. Here, we combine genome-wide epigenome profiling, epigenome editing, and phenotypic and single-cell RNA-seq CRISPR screening to identify a new class of genomic enhancers that responds to the mechanical microenvironment. These 'mechanoenhancers' could be active on either soft or stiff extracellular matrix contexts, and regulated transcription to influence critical cell functions including apoptosis, mechanotransduction, proliferation, and migration. Epigenetic editing of mechanoenhancers on rigid materials tuned gene expression to levels observed on softer materials, thereby reprogramming the cellular response to the mechanical microenvironment. These editing approaches may enable the precise alteration of mechanically-driven disease states.

2.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260589

RESUMO

The ability of cells to sense and respond to mechanical forces is critical in many physiological and pathological processes. However, the mechanisms by which forces affect protein function inside cells remain unclear. Motivated by in vitro demonstrations of fluorescent proteins (FPs) undergoing reversible mechanical switching of fluorescence, we investigated if force-sensitive changes in FP function could be visualized in cells. Guided by a computational model of FP mechanical switching, we develop a formalism for its detection in Förster resonance energy transfer (FRET)-based biosensors and demonstrate its occurrence in cellulo in a synthetic actin-crosslinker and the mechanical linker protein vinculin. We find that in cellulo mechanical switching is reversible and altered by manipulation of cellular force generation as well as force-sensitive bond dynamics of the biosensor. Together, this work describes a new framework for assessing FP mechanical stability and provides a means of probing force-sensitive protein function inside cells. MOTIVATION: The ability of cells to sense mechanical forces is critical in developmental, physiological, and pathological processes. Cells sense mechanical cues via force-induced alterations in protein structure and function, but elucidation of the molecular mechanisms is hindered by the lack of approaches to directly probe the effect of forces on protein structure and function inside cells. Motivated by in vitro observations of reversible fluorescent protein mechanical switching, we developed an approach for detecting fluorescent protein mechanical switching in cellulo . This enables the visualization of force-sensitive protein function inside living cells.

3.
Proc Natl Acad Sci U S A ; 120(50): e2316456120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38055737

RESUMO

The ability of cells to move in a mechanically coupled, coordinated manner, referred to as collective cell migration, is central to many developmental, physiological, and pathophysiological processes. Limited understanding of how mechanical forces and biochemical regulation interact to affect coupling has been a major obstacle to unravelling the underlying mechanisms. Focusing on the linker protein vinculin, we use a suite of Förster resonance energy transfer-based biosensors to probe its mechanical functions and biochemical regulation, revealing a switch that toggles vinculin between loadable and unloadable states. Perturbation of the switch causes covarying changes in cell speed and coordination, suggesting alteration of the friction within the system. Molecular scale modelling reveals that increasing levels of loadable vinculin increases friction, due to engagement of self-stabilizing catch bonds. Together, this work reveals a regulatory switch for controlling cell coupling and describes a paradigm for relating biochemical regulation, altered mechanical properties, and changes in cell behaviors.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Fenômenos Mecânicos , Vinculina/metabolismo , Movimento Celular/fisiologia , Adesão Celular/fisiologia
4.
Nat Commun ; 14(1): 8300, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097542

RESUMO

The ability of cells and tissues to respond differentially to mechanical forces applied in distinct directions is mediated by the ability of load-bearing proteins to preferentially maintain physical linkages in certain directions. However, the molecular basis and biological consequences of directional force-sensitive binding remain unclear. Vinculin (Vcn) is a load-bearing linker protein that exhibits directional catch bonding due to interactions between the Vcn tail domain (Vt) and filamentous (F)-actin. We developed a computational approach to predict Vcn residues involved in directional catch bonding and produced a set of associated Vcn variants with unaltered Vt structure, actin binding, or phospholipid interactions. Incorporation of the variants did not affect Vcn activation but reduced Vcn loading and altered exchange dynamics, consistent with the loss of directional catch bonding. Expression of Vcn variants perturbed the coordination of subcellular structures and cell migration, establishing key cellular functions for Vcn directional catch bonding.


Assuntos
Citoesqueleto de Actina , Actinas , Actinas/metabolismo , Vinculina/genética , Citoesqueleto de Actina/metabolismo , Movimento Celular , Ligação Proteica
5.
Dev Cell ; 58(6): 522-534.e7, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36924770

RESUMO

Mechanosensitive processes often rely on adhesion structures to strengthen, or mature, in response to applied loads. However, a limited understanding of how the molecular tensions that are experienced by a particular protein affect the recruitment of other proteins represents a major obstacle in the way of deciphering molecular mechanisms that underlie mechanosensitive processes. Here, we describe an imaging-based technique, termed fluorescence-tension co-localization (FTC), for studying molecular-tension-sensitive protein recruitment inside cells. Guided by discrete time Markov chain simulations of protein recruitment, we integrate immunofluorescence labeling, molecular tension sensors, and machine learning to determine the sensitivity, specificity, and context dependence of molecular-tension-sensitive protein recruitment. The application of FTC to the mechanical linker protein vinculin in mouse embryonic fibroblasts reveals constitutive and context-specific molecular-tension-sensitive protein recruitment that varies with adhesion maturation. FTC overcomes limitations associated with the alteration of numerous proteins during the manipulation of cell contractility, providing molecularly specific insights into tension-sensitive protein recruitment.


Assuntos
Fibroblastos , Adesões Focais , Animais , Camundongos , Adesões Focais/metabolismo , Fibroblastos/metabolismo , Vinculina/metabolismo , Adesão Celular/fisiologia
6.
bioRxiv ; 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36711698

RESUMO

Collective cell migration (CCM) plays important roles in development, physiological, and pathological processes. A key feature of CCM is the dynamic mechanical coupling between cells, which enables both long-range coordination and local rearrangements. This coupling requires the ability of cell adhesions to adapt to forces. Recent efforts have identified key proteins and implicated cellular-scale mechanical properties, but how key proteins give rise to these larger-scale mechanical processes is unclear. Using force-sensitive biosensors, cell migration assays, and molecular clutch models, we sought a molecular understanding of adhesion strengthening that could bridge this gap. We found that the mechanical linker protein vinculin bears substantial loads at AJs, FAs, and in the cytoplasm during epithelial sheet migration, and we identified a switch-like residue on vinculin that regulates its conformation and loading at the AJs during CCM. In vinculin KO-rescue, this switch jointly controlled the speed and coupling length-scale of CCM, which suggested changes in adhesion-based friction. To test this, we developed molecularly detailed friction clutch models of the FA and AJ. They show that open, loaded vinculin increases friction in adhesive structures, with larger affects observed in AJs. Thus, this work elucidates how load-bearing linker proteins can be regulated to alter mechanical properties of cells and enable rapid tuning of mechanical coupling in CCM.

7.
Res Sq ; 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36711743

RESUMO

The ability of cells and tissues to differentially resist or adapt to mechanical forces applied in distinct directions is mediated by the ability of load-bearing proteins to preferentially maintain physical linkages in certain directions. However, the molecular basis and biological consequences of directional force-sensitive binding are unclear. Vinculin (Vcn) is a load-bearing linker protein that exhibits directional catch bonding due to interactions between the Vcn tail domain (Vt) and filamentous (F)-actin. We developed a computational approach to predict Vcn residues involved in directional catch bonding and produced a set of associated Vcn variants with unaltered Vt structure, actin binding, or phospholipid interactions. Incorporation of these variants into Vcn biosensors did not perturb Vcn conformation, but reduced Vcn loading consistent with loss of directional catch bonding. Expression of Vcn variants perturbed the coalignment of FAs and F-actin and directed cell migration, establishing key cellular functions for Vcn directional catch bonding.

8.
Front Bioeng Biotechnol ; 10: 837619, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299636

RESUMO

Meniscus injuries are highly prevalent, and both meniscus injury and subsequent surgery are linked to the development of post-traumatic osteoarthritis (PTOA). Although the pathogenesis of PTOA remains poorly understood, the inflammatory cytokine IL-1 is elevated in synovial fluid following acute knee injuries and causes degradation of meniscus tissue and inhibits meniscus repair. Dynamic mechanical compression of meniscus tissue improves integrative meniscus repair in the presence of IL-1 and dynamic tensile strain modulates the response of meniscus cells to IL-1. Despite the promising observed effects of physiologic mechanical loading on suppressing inflammatory responses of meniscus cells, there is a lack of knowledge on the global effects of loading on meniscus transcriptomic profiles. In this study, we compared two established models of physiologic mechanical stimulation, dynamic compression of tissue explants and cyclic tensile stretch of isolated meniscus cells, to identify conserved responses to mechanical loading. RNA sequencing was performed on loaded and unloaded meniscus tissue or isolated cells from inner and outer zones, with and without IL-1. Overall, results from both models showed significant modulation of inflammation-related pathways with mechanical stimulation. Anti-inflammatory effects of loading were well-conserved between the tissue compression and cell stretch models for inner zone; however, the cell stretch model resulted in a larger number of differentially regulated genes. Our findings on the global transcriptomic profiles of two models of mechanical stimulation lay the groundwork for future mechanistic studies of meniscus mechanotransduction, which may lead to the discovery of novel therapeutic targets for the treatment of meniscus injuries.

9.
Theranostics ; 11(12): 6090-6104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897901

RESUMO

Therapeutic ultrasound or shockwave has shown its great potential to stimulate neural and muscle tissue, where cavitation microbubble induced Ca2+ signaling is believed to play an important role. However, the pertinent mechanisms are unknown, especially at the single-cell level. Particularly, it is still a major challenge to get a comprehensive understanding of the effect of potential mechanosensitive molecular players on the cellular responses, including mechanosensitive ion channels, purinergic signaling and integrin ligation by extracellular matrix. Methods: Here, laser-induced cavitation microbubble was used to stimulate individual HEK293T cells either genetically knocked out or expressing Piezo1 ion channels with different normalized bubble-cell distance. Ca2+ signaling and potential membrane poration were evaluated with a real-time fluorescence imaging system. Integrin-binding microbeads were attached to the apical surface of the cells at mild cavitation conditions, where the effect of Piezo1, P2X receptors and integrin ligation on single cell intracellular Ca2+ signaling was assessed. Results: Ca2+ responses were rare at normalized cell-bubble distances that avoided membrane poration, even with overexpression of Piezo1, but could be increased in frequency to 42% of cells by attaching integrin-binding beads. We identified key molecular players in the bead-enhanced Ca2+ response: increased integrin ligation by substrate ECM triggered ATP release and activation of P2X-but not Piezo1-ion channels. The resultant Ca2+ influx caused dynamic changes in cell spread area. Conclusion: This approach to safely eliciting a Ca2+ response with cavitation microbubbles and the uncovered mechanism by which increased integrin-ligation mediates ATP release and Ca2+ signaling will inform new strategies to stimulate tissues with ultrasound and shockwaves.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Integrinas/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Canais Iônicos/metabolismo , Microbolhas
10.
Cytometry A ; 99(4): 407-416, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32700451

RESUMO

FÓ§rster (or fluorescence) resonance energy transfer (FRET) is a quantifiable energy transfer in which a donor fluorophore nonradiatively transfers its excitation energy to an acceptor fluorophore. A change in FRET efficiency indicates a change of proximity and environment of these fluorophores, which enables the study of intermolecular interactions. Measurement of FRET efficiency using the sensitized emission method requires a donor-acceptor calibrated system. One of these calibration factors named the G factor, which depends on instrument parameters related to the donor and acceptor measurement channels and on the fluorophores quantum efficiencies, can be determined in several different ways and allows for conversion of the raw donor and acceptor emission signals to FRET efficiency. However, the calculated value of the G factor from experimental data can fluctuate significantly depending on the chosen experimental method and the size of the sample. In this technical note, we extend the results of Gates et al. (Cytometry Part A 95A (2018) 201-213) by refining the calibration method used for calibration of FRET from image pixel data. Instead of using the pixel histograms of two constructs with high and low FRET efficiency to determine the G factor, we use pixel histogram data from one construct of known efficiency. We validate this method by determining the G factor with the same constructs developed and used by Gates et al. and comparing the results from the two approaches. While the two approaches are equivalent theoretically, we demonstrate that the use of a single construct with known efficiency provides a more precise experimental measurement of the G factor that can be attained by collecting a smaller number of images. © 2020 International Society for Advancement of Cytometry.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Calibragem
11.
Dev Cell ; 54(1): 60-74.e7, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32585132

RESUMO

Basement membranes (BMs) are supramolecular matrices built on laminin and type IV collagen networks that provide structural and signaling support to tissues. BM complexity, however, has hindered an understanding of its formation, dynamics, and regulation. Using genome editing, we tagged 29 BM matrix components and receptors in C. elegans with mNeonGreen. Here, we report a common template that initiates BM formation, which rapidly diversifies during tissue differentiation. Through photobleaching studies, we show that BMs are not static-surprisingly, many matrix proteins move within the laminin and collagen scaffoldings. Finally, quantitative imaging, conditional knockdown, and optical highlighting indicate that papilin, a poorly studied glycoprotein, is the most abundant component in the gonadal BM, where it facilitates type IV collagen removal during BM expansion and tissue growth. Together, this work introduces methods for holistic investigation of BM regulation and reveals that BMs are highly dynamic and capable of rapid change to support tissues.


Assuntos
Membrana Basal/metabolismo , Matriz Extracelular/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colágeno/genética , Colágeno/metabolismo , Laminina/genética , Laminina/metabolismo , Movimento (Física)
12.
J Biomed Opt ; 24(12): 1-11, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31884745

RESUMO

We demonstrate the possibility of measuring FRET efficiency with a low-cost frequency-domain fluorescence lifetime imaging microscope (FD-FLIM). The system utilizes single-frequency-modulated excitation, which enables the use of cost-effective laser sources and electronics, simplification of data acquisition and analysis, and a dual-channel detection capability. Following calibration with coumarin 6, we measured the apparent donor lifetime in mTFP1-mVenus FRET standards expressed in living cells. We evaluated the system's sensitivity by differentiating the short and long lifetimes of mTFP1 corresponding to the known standards' high and low FRET efficiency, respectively. Furthermore, we show that the lifetime of the vinculin tension sensor, VinTS, at focal adhesions (2.30 ± 0.16 ns) is significantly (p < 10 - 6) longer than the lifetime of the unloaded TSMod probe (2.02 ± 0.16 ns). The pixel dwell time was 6.8 µs for samples expressing the FRET standards, with signal typically an order of magnitude higher than VinTS. The apparent FRET efficiency (EFRETapp) of the standards, calculated from the measured apparent lifetime, was linearly related to their known FRET efficiency by a factor of 0.92 to 0.99 (R2 = 0.98). This relationship serves as a calibration curve to convert apparent FRET to true FRET and circumvent the need to measure multiexponential lifetime decays. This approach yielded a FRET efficiency of 18% to 19.5%, for VinTS, in agreement with published values. Taken together, our results demonstrate a cost-effective, fast, and sensitive FD-FLIM approach with the potential to facilitate applications of FLIM in mechanobiology and FRET-based biosensing.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Microscopia de Fluorescência/métodos , Sondas Moleculares/química , Animais , Linhagem Celular , Desenho de Equipamento , Transferência Ressonante de Energia de Fluorescência/instrumentação , Adesões Focais/fisiologia , Processamento de Imagem Assistida por Computador , Camundongos , Microscopia de Fluorescência/instrumentação , Processamento de Sinais Assistido por Computador , Vinculina/química
13.
Biophys J ; 117(9): 1692-1701, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31623884

RESUMO

During metastasis, cancer cells navigate through a spatially heterogeneous extracellular matrix (ECM). Physical properties of ECM, including the degree of confinement, influence cell migration behavior. Here, utilizing in vitro three-dimensional collagen microtracks, we demonstrate that cell-ECM interactions, specifically the degree of spatial confinement, regulate migratory behavior. We found that cells migrate faster when they are fully confined, contacting all four walls (top, bottom, and two sides) of a collagen microtrack, compared with cells that are partially confined, contacting less than four walls. When fully confined, cells exhibit fewer but larger vinculin-containing adhesions and create greater strains in the surrounding matrix directed toward the cell body. In contrast, partially confined cells develop a more elongated morphology with smaller but significantly more vinculin-containing adhesions and displace the surrounding matrix less than fully confined cells. The resulting effect of increasing cell contractility via Rho activation is dependent on the number of walls with which the cell is in contact. Although matrix strains increase in both fully and partially confined cells, cells that are partially confined increase speed, whereas those in full confinement decrease speed. Together, these results suggest that the degree of cell-ECM contact during confined migration is a key determinant of speed, morphology, and cell-generated substrate strains during motility, and these factors may work in tandem to facilitate metastatic cell migration.


Assuntos
Movimento Celular , Matriz Extracelular/metabolismo , Linhagem Celular Tumoral , Tamanho Celular , Junções Célula-Matriz/metabolismo , Ativação Enzimática , Adesões Focais/metabolismo , Humanos , Vinculina/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
14.
J Cell Sci ; 132(17)2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31391240

RESUMO

How ion channels localize and distribute on the cell membrane remains incompletely understood. We show that interventions that vary cell adhesion proteins and cell size also affect the membrane current density of inward-rectifier K+ channels (Kir2.1; encoded by KCNJ2) and profoundly alter the action potential shape of excitable cells. By using micropatterning to manipulate the localization and size of focal adhesions (FAs) in single HEK293 cells engineered to stably express Kir2.1 channels or in neonatal rat cardiomyocytes, we establish a robust linear correlation between FA coverage and the amplitude of Kir2.1 current at both the local and whole-cell levels. Confocal microscopy showed that Kir2.1 channels accumulate in membrane proximal to FAs. Selective pharmacological inhibition of key mediators of protein trafficking and the spatially dependent alterations in the dynamics of Kir2.1 fluorescent recovery after photobleaching revealed that the Kir2.1 channels are transported to the cell membrane uniformly, but are preferentially internalized by endocytosis at sites that are distal from FAs. Based on these results, we propose adhesion-regulated membrane localization of ion channels as a fundamental mechanism of controlling cellular electrophysiology via mechanochemical signals, independent of the direct ion channel mechanogating.


Assuntos
Integrinas/metabolismo , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Endocitose , Feminino , Células HEK293 , Humanos , Ratos , Ratos Sprague-Dawley
15.
Proc Natl Acad Sci U S A ; 116(6): 1992-1997, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30674675

RESUMO

Microarchitectural cues drive aligned fibrillar collagen deposition in vivo and in biomaterial scaffolds, but the cell-signaling events that underlie this process are not well understood. Utilizing a multicellular patterning model system that allows for observation of intracellular signaling events during collagen matrix assembly, we investigated the role of calcium (Ca2+) signaling in human mesenchymal stem cells (MSCs) during this process. We observed spontaneous Ca2+ oscillations in MSCs during fibrillar collagen assembly, and hypothesized that the transient receptor potential vanilloid 4 (TRPV4) ion channel, a mechanosensitive Ca2+-permeable channel, may regulate this signaling. Inhibition of TRPV4 nearly abolished Ca2+ signaling at initial stages of collagen matrix assembly, while at later times had reduced but significant effects. Importantly, blocking TRPV4 activity dramatically reduced aligned collagen fibril assembly; conversely, activating TRPV4 accelerated aligned collagen formation. TRPV4-dependent Ca2+ oscillations were found to be independent of pattern shape or subpattern cell location, suggesting this signaling mechanism is necessary for aligned collagen formation but not sufficient in the absence of physical (microarchitectural) cues that force multicellular alignment. As cell-generated mechanical forces are known to be critical to the matrix assembly process, we examined the role of TRPV4-mediated Ca2+ signaling in force generated across the load-bearing focal adhesion protein vinculin within MSCs using an FRET-based tension sensor. Inhibiting TRPV4 decreased tensile force across vinculin, whereas TRPV4 activation caused a dynamic unloading and reloading of vinculin. Together, these findings suggest TRPV4 activity regulates forces at cell-matrix adhesions and is critical to aligned collagen matrix assembly by MSCs.


Assuntos
Sinalização do Cálcio/fisiologia , Colágeno/biossíntese , Células-Tronco Mesenquimais/metabolismo , Canais de Cátion TRPV/metabolismo , Vinculina/metabolismo , Células da Medula Óssea , Cálcio , Junções Célula-Matriz/metabolismo , Microambiente Celular , Matriz Extracelular , Adesões Focais , Humanos
16.
Curr Opin Biomed Eng ; 12: 83-94, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32864525

RESUMO

Nearly all cellular processes are sensitive to mechanical inputs, and this plays a major role in diverse physiological processes. Mechanical stimuli are thought to be primarily detected through force-induced changes in protein structure. Approximately a decade ago, molecular tension sensors were created to measure forces across proteins within cells. Since then, an impressive assortment of sensors has been created and provided key insights into mechanotransduction, but comparisons of measurements between various sensors are challenging. In this review, we discuss the different types of molecular tension sensors, provide a system of classification based on their molecular-scale mechanical properties, and highlight how new applications of these sensors are enabling measurements beyond the magnitude of tensile load. We suggest that an expanded understanding of the functionality of these sensors, as well as integration with other techniques, will lead to consensus amongst measurements as well as critical insights into the underlying mechanisms of mechanotransduction.

17.
Cytometry A ; 95(2): 201-213, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30523675

RESUMO

Mechanobiology, the study of how mechanical forces affect cellular behavior, is an emerging field of study that has garnered broad and significant interest. Researchers are currently seeking to better understand how mechanical signals are transmitted, detected, and integrated at a subcellular level. One tool for addressing these questions is a Förster resonance energy transfer (FRET)-based tension sensor, which enables the measurement of molecular-scale forces across proteins based on changes in emitted light. However, the reliability and reproducibility of measurements made with these sensors has not been thoroughly examined. To address these concerns, we developed numerical methods that improve the accuracy of measurements made using sensitized emission-based imaging. To establish that FRET-based tension sensors are versatile tools that provide consistent measurements, we used these methods, and demonstrated that a vinculin tension sensor is unperturbed by cell fixation, permeabilization, and immunolabeling. This suggests FRET-based tension sensors could be coupled with a variety of immuno-fluorescent labeling techniques. Additionally, as tension sensors are frequently employed in complex biological samples where large experimental repeats may be challenging, we examined how sample size affects the uncertainty of FRET measurements. In total, this work establishes guidelines to improve FRET-based tension sensor measurements, validate novel implementations of these sensors, and ensure that results are precise and reproducible. © 2018 International Society for Advancement of Cytometry.


Assuntos
Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Animais , Linhagem Celular , Camundongos , Reprodutibilidade dos Testes , Vinculina/metabolismo
18.
J Vis Exp ; (141)2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30451225

RESUMO

Cells sense and respond to physical cues in their environment by converting mechanical stimuli into biochemically-detectable signals in a process called mechanotransduction. A crucial step in mechanotransduction is the transmission of forces between the external and internal environments. To transmit forces, there must be a sustained, unbroken physical linkage created by a series of protein-protein interactions. For a given protein-protein interaction, mechanical load can either have no effect on the interaction, lead to faster disassociation of the interaction, or even stabilize the interaction. Understanding how molecular load dictates protein turnover in living cells can provide valuable information about the mechanical state of a protein, in turn elucidating its role in mechanotransduction. Existing techniques for measuring force-sensitive protein dynamics either lack direct measurements of protein load or rely on the measurements performed outside of the cellular context. Here, we describe a protocol for the Förster resonance energy transfer-fluorescence recovery after photobleaching (FRET-FRAP) technique, which enables the measurement of force-sensitive protein dynamics within living cells. This technique is potentially applicable to any FRET-based tension sensor, facilitating the study of force-sensitive protein dynamics in variety of subcellular structures and in different cell types.


Assuntos
Microscopia de Fluorescência/métodos , Proteínas/química , Humanos
19.
Elife ; 72018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30024378

RESUMO

Molecular tension sensors have contributed to a growing understanding of mechanobiology. However, the limited dynamic range and inability to specify the mechanical sensitivity of these sensors has hindered their widespread use in diverse contexts. Here, we systematically examine the components of tension sensors that can be altered to improve their functionality. Guided by the development of a first principles model describing the mechanical behavior of these sensors, we create a collection of sensors that exhibit predictable sensitivities and significantly improved performance in cellulo. Utilized in the context of vinculin mechanobiology, a trio of these new biosensors with distinct force- and extension-sensitivities reveal that an extension-based control paradigm regulates vinculin loading in a variety of mechanical contexts. To enable the rational design of molecular tension sensors appropriate for diverse applications, we predict the mechanical behavior, in terms of force and extension, of additional 1020 distinct designs.


Assuntos
Técnicas Biossensoriais , Vinculina/metabolismo , Amidas/farmacologia , Sequência de Aminoácidos , Animais , Fenômenos Biomecânicos , Fenômenos Biofísicos , Calibragem , Transferência Ressonante de Energia de Fluorescência , Adesões Focais/efeitos dos fármacos , Adesões Focais/metabolismo , Células HEK293 , Humanos , Proteínas Luminescentes/química , Camundongos , Modelos Biológicos , Peptídeos/metabolismo , Piridinas/farmacologia , Talina/metabolismo
20.
Biophys J ; 114(7): 1680-1694, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642037

RESUMO

Cell migration is a complex process, requiring coordination of many subcellular processes including membrane protrusion, adhesion, and contractility. For efficient cell migration, cells must concurrently control both transmission of large forces through adhesion structures and translocation of the cell body via adhesion turnover. Although mechanical regulation of protein dynamics has been proposed to play a major role in force transmission during cell migration, the key proteins and their exact roles are not completely understood. Vinculin is an adhesion protein that mediates force-sensitive processes, such as adhesion assembly under cytoskeletal load. Here, we elucidate the mechanical regulation of vinculin dynamics. Specifically, we paired measurements of vinculin loads using a Förster resonance energy transfer-based tension sensor and vinculin dynamics using fluorescence recovery after photobleaching to measure force-sensitive protein dynamics in living cells. We find that vinculin adopts a variety of mechanical states at adhesions, and the relationship between vinculin load and vinculin dynamics can be altered by the inhibition of vinculin binding to talin or actin or reduction of cytoskeletal contractility. Furthermore, the force-stabilized state of vinculin required for the stabilization of membrane protrusions is unnecessary for random migration, but is required for directional migration along a substrate-bound cue. These data show that the force-sensitive dynamics of vinculin impact force transmission and enable the mechanical integration of subcellular processes. These results suggest that the regulation of force-sensitive protein dynamics may have an underappreciated role in many cellular processes.


Assuntos
Movimento Celular , Adesões Focais , Fenômenos Mecânicos , Vinculina/metabolismo , Actomiosina/metabolismo , Animais , Fenômenos Biomecânicos , Linhagem Celular , Sobrevivência Celular , Camundongos , Talina/metabolismo , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA