Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 20(10): 6989-6997, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32790414

RESUMO

Nanoimprinting lithography (NIL) is a next-generation nanofabrication method, capable of replicating nanostructures from original master surfaces. Here, we develop highly scalable, simple, and nondestructive NIL using a dissolvable template. Termed dissolvable template nanoimprinting lithography (DT-NIL), our method utilizes an economic thermoplastic resin to fabricate nanoimprinting templates, which can be easily dissolved in simple organic solvents. We used the DT-NIL method to replicate cicada wings which have surface nanofeatures of ∼100 nm in height. The master, template, and replica surfaces showed a >∼94% similarity based on the measured diameter and height of the nanofeatures. The versatility of DT-NIL was also demonstrated with the replication of re-entrant, multiscale, and hierarchical features on fly wings, as well as hard silicon wafer-based artificial nanostructures. The DT-NIL method can be performed under ambient conditions with inexpensive materials and equipment. Our work opens the door to opportunities for economical and high-throughput nanofabrication processes.


Assuntos
Nanoestruturas , Animais , Impressão , Asas de Animais
2.
ACS Appl Bio Mater ; 2(7): 2726-2737, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030808

RESUMO

Biofouling disrupts the surface functionality and integrity of engineered substrates. A variety of natural materials such as plant leaves and insect wings have evolved sophisticated physical mechanisms capable of preventing biofouling. Over the past decade, several reports have pinpointed nanoscale surface topography as an important regulator of surface adhesion and growth of bacteria. Although artificial nanoengineered features have been used to create bactericidal materials that kill adhered bacteria, functional surfaces capable of synergistically providing antiadhesion and bactericidal properties remain to be developed. Furthermore, fundamental questions pertaining to the need for intrinsic hydrophobicity to achieve bactericidal performance and the role of structure length scale (nano vs micro) are still being explored. Here, we demonstrate highly scalable, cost-effective, and efficient nanoengineered multifunctional surfaces that possess both antiadhesion and bactericidal properties on industrially relevant copper (Cu) and aluminum (Al) substrates. We characterize antiadhesion and bactericidal performance using a combination of scanning electron microscopy (SEM), atomic force microscopy (AFM), live/dead bacterial staining and imaging, as well as solution-phase and Petrifilm measurements of bacterial viability. Our results showed that nanostructures created on both Cu and Al were capable of physical deformation of adhered Escherichia coli bacteria. Bacterial viability measurements on both Cu and Al indicated a complex interaction between the antiadhesion and bactericidal nature of these materials and their surface topography, chemistry, and structure. Increased superhydrophobicity greatly decreased bacterial adhesion while not significantly influencing surface bactericidal performance. Furthermore, we observed that more densely packed nanoscale structures improved antiadhesion properties when compared to larger features, even over extended time scales of up to 24 h. Our data suggests that the superhydrophobic Al substrate possesses superior antiadhesion and bactericidal effects, even over long time courses. The techniques and insights presented here will inform future work on antiadhesion and bactericidal multifunctional surfaces and enable their rational design.

3.
J Am Chem Soc ; 138(27): 8603-11, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27322132

RESUMO

All-inorganic cesium lead halide (CsPbX3, X = Br(-), I(-)) perovskites could potentially provide comparable photovoltaic performance with enhanced stability compared to organic-inorganic lead halide species. However, small-bandgap cubic CsPbI3 has been difficult to study due to challenges forming CsPbI3 in the cubic phase. Here, a low-temperature procedure to form cubic CsPbI3 has been developed through a halide exchange reaction using films of sintered CsPbBr3 nanocrystals. The reaction was found to be strongly dependent upon temperature, featuring an Arrhenius relationship. Additionally, film thickness played a significant role in determining internal film structure at intermediate reaction times. Thin films (50 nm) showed only a small distribution of CsPbBrxI3-x species, while thicker films (350 nm) exhibited much broader distributions. Furthermore, internal film structure was ordered, featuring a compositional gradient within film. Transient absorption spectroscopy showed the influence of halide exchange on the excited state of the material. In thicker films, charge carriers were rapidly transferred to iodide-rich regions near the film surface within the first several picoseconds after excitation. This ultrafast vectorial charge-transfer process illustrates the potential of utilizing compositional gradients to direct charge flow in perovskite-based photovoltaics.

4.
Angew Chem Int Ed Engl ; 53(8): 2110-3, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24453122

RESUMO

The development and lifespan of C. elegans are controlled by the nuclear hormone receptor DAF-12, an important model for the vertebrate vitamin D and liver X receptors. As with its mammalian homologues, DAF-12 function is regulated by bile acid-like steroidal ligands; however, tools for investigating their biosynthesis and function in vivo are lacking. A flexible synthesis for DAF-12 ligands and masked ligand derivatives that enable precise temporal control of DAF-12 function was developed. For ligand masking, photocleavable amides of 5-methoxy-N-methyl-2-nitroaniline (MMNA) were introduced. MMNA-masked ligands are bioavailable and after incorporation into the worm, brief UV irradiation can be used to trigger the expression of DAF-12 target genes and initiate development from dauer larvae into adults. The in vivo release of DAF-12 ligands and other small-molecule signals by using photocleavable MMNA-masked ligands will enable functional studies with precise spatial and temporal resolution.


Assuntos
Amidas/química , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Caenorhabditis elegans/crescimento & desenvolvimento , Ligantes , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Amidas/farmacologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ácido Quenodesoxicólico/química , Larva/efeitos dos fármacos , Larva/metabolismo , Ácido Litocólico/química , Fotólise , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esteroides/química , Esteroides/farmacologia , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA