Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(5): 1340-1358, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36524285

RESUMO

The European Union is highly dependent on soybean imports from overseas to meet its protein demands. Individual Member States have been quick to declare self-sufficiency targets for plant-based proteins, but detailed strategies are still lacking. Rising global temperatures have painted an image of a bright future for soybean production in Europe, but emerging climatic risks such as drought have so far not been included in any of those outlooks. Here, we present simulations of future soybean production and the most prominent risk factors across Europe using an ensemble of climate and soybean growth models. Projections suggest a substantial increase in potential soybean production area and productivity in Central Europe, while southern European production would become increasingly dependent on supplementary irrigation. Average productivity would rise by 8.3% (RCP 4.5) to 8.7% (RCP 8.5) as a result of improved growing conditions (plant physiology benefiting from rising temperature and CO2 levels) and farmers adapting to them by using cultivars with longer phenological cycles. Suitable production area would rise by 31.4% (RCP 4.5) to 37.7% (RCP 8.5) by the mid-century, contributing considerably more than productivity increase to the production potential for closing the protein gap in Europe. While wet conditions at harvest and incidental cold spells are the current key challenges for extending soybean production, the models and climate data analysis anticipate that drought and heat will become the dominant limitations in the future. Breeding for heat-tolerant and water-efficient genotypes is needed to further improve soybean adaptation to changing climatic conditions.


Assuntos
Secas , Glycine max , Glycine max/genética , Mudança Climática , Melhoramento Vegetal , Europa (Continente)
2.
Glob Chang Biol ; 24(5): e733-e740, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29322590

RESUMO

Resilience of cocoa agroforestry vs. full sun under extreme climatic conditions. In the specific case of our study, the two shade tree species associated with cocoa resulted in strong competition for water and became a disadvantage to the cocoa plants contrary to expected positive effects.


Assuntos
Árvores , Água
3.
Glob Chang Biol ; 24(1): 273-286, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28865146

RESUMO

Cocoa agroforestry is perceived as potential adaptation strategy to sub-optimal or adverse environmental conditions such as drought. We tested this strategy over wet, dry and extremely dry periods comparing cocoa in full sun with agroforestry systems: shaded by (i) a leguminous tree species, Albizia ferruginea and (ii) Antiaris toxicaria, the most common shade tree species in the region. We monitored micro-climate, sap flux density, throughfall, and soil water content from November 2014 to March 2016 at the forest-savannah transition zone of Ghana with climate and drought events during the study period serving as proxy for projected future climatic conditions in marginal cocoa cultivation areas of West Africa. Combined transpiration of cocoa and shade trees was significantly higher than cocoa in full sun during wet and dry periods. During wet period, transpiration rate of cocoa plants shaded by A. ferruginea was significantly lower than cocoa under A. toxicaria and full sun. During the extreme drought of 2015/16, all cocoa plants under A. ferruginea died. Cocoa plants under A. toxicaria suffered 77% mortality and massive stress with significantly reduced sap flux density of 115 g cm-2  day-1 , whereas cocoa in full sun maintained higher sap flux density of 170 g cm-2  day-1 . Moreover, cocoa sap flux recovery after the extreme drought was significantly higher in full sun (163 g cm-2  day-1 ) than under A. toxicaria (37 g cm-2  day-1 ). Soil water content in full sun was higher than in shaded systems suggesting that cocoa mortality in the shaded systems was linked to strong competition for soil water. The present results have major implications for cocoa cultivation under climate change. Promoting shade cocoa agroforestry as drought resilient system especially under climate change needs to be carefully reconsidered as shade tree species such as the recommended leguminous A. ferruginea constitute major risk to cocoa functioning under extended severe drought.


Assuntos
Agricultura/métodos , Cacau/fisiologia , Mudança Climática , Florestas , Adaptação Fisiológica , Luz Solar , Água
4.
Ecology ; 98(7): 1945-1956, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28464275

RESUMO

One of the world's most important and rapidly expanding crops, oil palm, is associated with low levels of biodiversity. Changes in predator communities might alter ecosystem services and subsequently sustainable management but these links have received little attention to date. Here, for the first time, we manipulated ant and flying vertebrate (birds and bats) access to oil palms in six smallholder plantations in Sumatra (Indonesia) and measured effects on arthropod communities, related ecosystem functions (herbivory, predation, decomposition and pollination) and crop yield. Arthropod predators increased in response to reductions in ant and bird access, but the overall effect of experimental manipulations on ecosystem functions was minimal. Similarly, effects on yield were not significant. We conclude that ecosystem functions and productivity in oil palm are, under current levels of low pest pressure and large pollinator populations, robust to large reductions of major predators.


Assuntos
Formigas/fisiologia , Arecaceae/crescimento & desenvolvimento , Aves/fisiologia , Quirópteros/fisiologia , Ecossistema , Animais , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA