Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 358(6368): 1332-1336, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29217578

RESUMO

Progressive kidney diseases are often associated with scarring of the kidney's filtration unit, a condition called focal segmental glomerulosclerosis (FSGS). This scarring is due to loss of podocytes, cells critical for glomerular filtration, and leads to proteinuria and kidney failure. Inherited forms of FSGS are caused by Rac1-activating mutations, and Rac1 induces TRPC5 ion channel activity and cytoskeletal remodeling in podocytes. Whether TRPC5 activity mediates FSGS onset and progression is unknown. We identified a small molecule, AC1903, that specifically blocks TRPC5 channel activity in glomeruli of proteinuric rats. Chronic administration of AC1903 suppressed severe proteinuria and prevented podocyte loss in a transgenic rat model of FSGS. AC1903 also provided therapeutic benefit in a rat model of hypertensive proteinuric kidney disease. These data indicate that TRPC5 activity drives disease and that TRPC5 inhibitors may be valuable for the treatment of progressive kidney diseases.


Assuntos
Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Hipertensão Renal/tratamento farmacológico , Indazóis/farmacologia , Proteinúria/tratamento farmacológico , Canais de Cátion TRPC/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Glomerulosclerose Segmentar e Focal/genética , Mutação , Podócitos/efeitos dos fármacos , Ratos , Ratos Endogâmicos Dahl , Ratos Transgênicos , Bibliotecas de Moléculas Pequenas , Canais de Cátion TRPC/farmacologia , Proteínas rac1 de Ligação ao GTP/genética
2.
JCI Insight ; 2(20)2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29046476

RESUMO

It is currently controversially discussed whether mesenchymal stem cells (MSC) facilitate cartilage regeneration in vivo by a progenitor- or a nonprogenitor-mediated mechanism. Here, we describe a potentially novel unbiased in vivo cell tracking system based on transgenic donor and corresponding immunocompetent marker-tolerant recipient mouse and rat lines in inbred genetic backgrounds. Tolerance of recipients was achieved by transgenic expression of an immunologically neutral but physicochemically distinguishable variant of the marker human placental alkaline phosphatase (ALPP). In this dual transgenic system, donor lines ubiquitously express WT, heat-resistant ALPP protein, whereas recipient lines express a heat-labile ALPP mutant (ALPPE451G) resulting from a single amino acid substitution. Tolerance of recipient lines to ALPP-expressing cells and tissues was verified by skin transplantation. Using this model, we show that intraarticularly injected MSC contribute to regeneration of articular cartilage in full-thickness cartilage defects mainly via a nonprogenitor-mediated mechanism.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Regeneração/imunologia , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Cartilagem Articular/citologia , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Injeções Intra-Articulares , Transplante das Ilhotas Pancreáticas , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Transgênicos , Ratos , Ratos Transgênicos , Transplante de Pele
3.
J Histochem Cytochem ; 65(12): 743-755, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29058957

RESUMO

Connective tissue growth factor (CTGF, also named CCN2) plays an important role in the development of tubulointerstitial fibrosis, which most critically determines the progression to end-stage renal failure in autosomal-dominant polycystic kidney disease (ADPKD), the most common genetically caused renal disease. We determined CTGF expression in a well-characterized animal model of human ADPKD, the PKD/Mhm (cy/+) rat. Kidneys of 12 weeks old (cy/+) as well as (+/+) non-affected rats were analyzed for CTGF RNA and protein expression by RT-PCR, Northern and Western blot analyses, in situ hybridization, and IHC. Besides the established expression of CTGF in glomerular cells in kidneys of wild-type (+/+) animals, in (cy/+) rats, CTGF mRNA and protein were robustly expressed in interstitial, stellate-shaped cells, located in a scattered pattern underlying the cystic epithelium and in focal areas of advanced tubulointerstitial remodeling. Renal CTGF mRNA and protein expression levels were significantly higher in (cy/+) rats compared with their (+/+) littermates. Detection of CTGF expression in cells adjacent to cystic epithelium and in areas of marked fibrosis suggests a role in the local response to cyst development and indicates that CTGF may be a relevant factor contributing to tubulointerstitial fibrosis in polycystic kidney disease.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Regulação da Expressão Gênica , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Animais , Modelos Animais de Doenças , Fibrose , Rim/metabolismo , Rim/patologia , Masculino , Rim Policístico Autossômico Dominante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
4.
Int J Mol Sci ; 17(6)2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27231899

RESUMO

Expression of kidney injury molecule-1 (Kim-1) is rapidly upregulated following tubular injury, constituting a biomarker for acute kidney damage. We examined the renal localization of Kim-1 expression in PKD/Mhm (polycystic kidney disease, Mannheim) (cy/+) rats (cy: mutated allel, +: wild type allel), an established model for autosomal dominant polycystic kidney disease, with chronic, mainly proximal tubulointerstitial alterations. For immunohistochemistry or Western blot analysis, kidneys of male adult heterozygously-affected (cy/+) and unaffected (+/+) littermates were perfusion-fixed or directly removed. Kim-1 expression was determined using peroxidase- or fluorescence-linked immunohistochemistry (alone or in combination with markers for tubule segments or differentiation). Compared to (+/+), only in (cy/+) kidneys, a chronic expression of Kim-1 could be detected by Western blot analysis, which was histologically confined to an apical cellular localization in areas of cystically-transformed proximal tubules with varying size and morphology, but not in distal tubular segments. Kim-1 was expressed by cystic epithelia exhibiting varying extents of dedifferentiation, as shown by double labeling with aquaporin-1, vimentin or osteopontin, yielding partial cellular coexpression. In this model, in contrast to other known molecules indicating renal injury and/or repair mechanisms, the chronic renal expression of Kim-1 is strictly confined to proximal cysts. Its exact role in interfering with tubulo-interstitial alterations in polycystic kidney disease warrants future investigations.


Assuntos
Moléculas de Adesão Celular/metabolismo , Túbulos Renais Proximais/metabolismo , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/patologia , Animais , Biomarcadores/metabolismo , Desdiferenciação Celular , Modelos Animais de Doenças , Túbulos Renais Proximais/patologia , Masculino , Especificidade de Órgãos , Ratos , Regulação para Cima
5.
Nephrol Dial Transplant ; 28(8): 2045-58, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23543593

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common human inherited diseases. Modifier genes seem to modulate the disease progression and might therefore be promising drug targets. Although a number of modifier loci have been already identified, no modifier gene has been proven to be a real modifier yet. METHODS: Gene expression profiling of two substrains of the Han:SPRD rat, namely PKD/Mhm and PKD/US, both harboring the same mutation, was conducted in 36-day-old animals. Catechol-O-methyltransferase (Comt) was identified as a potential modifier gene. A 3-month treatment with tolcapone, a selective inhibitor of Comt, was carried out in PKD/Mhm and PKD/US (cy/+) animals. RESULTS: Comt is localized within a known modifier locus of PKD (MOP2). The enzyme encoding gene was found upregulated in the more severely affected PKD/Mhm substrain and was hence presumed to be a putative modifier gene of PKD. The treatment with tolcapone markedly attenuated the loss of renal function, inhibited renal enlargement, shifted the size distribution of renal cysts and retarded cell proliferation, apoptosis, inflammation and fibrosis development in affected (cy/+) male and female PKD/Mhm and PKD/US rats. CONCLUSIONS: Comt has been confirmed to be the first reported modifier gene for PKD and tolcapone offers a promising drug for treating PKD.


Assuntos
Benzofenonas/farmacologia , Inibidores de Catecol O-Metiltransferase , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Nitrofenóis/farmacologia , Doenças Renais Policísticas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Western Blotting , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Técnicas Imunoenzimáticas , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Doenças Renais Policísticas/patologia , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tolcapona
6.
Am J Physiol Endocrinol Metab ; 302(9): E1044-54, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22318954

RESUMO

This study aimed to elucidate the role of the AT(2) receptor (AT(2)R), which is expressed and upregulated in the adrenal zona glomerulosa (ZG) under conditions of increased aldosterone production. We developed a novel transgenic rat (TGR; TGRCXmAT(2)R) that overexpresses the AT(2)R in the adrenal gland, heart, kidney, brain, skeletal muscle, testes, lung, spleen, aorta, and vein. As a consequence the total angiotensin II (Ang II) binding sites increased 7.8-fold in the kidney, 25-fold in the heart, and twofold in the adrenals. The AT(2)R number amounted to 82-98% of total Ang II binding sites. In the ZG of TGRCXmAT(2)R, the AT(2)R density was elevated threefold relative to wild-type (WT) littermates, whereas AT(1)R density remained unchanged. TGRCXmAT(2)R rats were viable and exhibited normal reproduction, blood pressure, and kidney function. Notably, a slightly but significantly reduced body weight and a moderate increase in plasma urea were observed. With respect to adrenal function, 24-h urinary and plasma aldosterone concentrations were unaffected in TGRCXmAT(2)R at baseline. Three and 14 days of Ang II infusion (300 ng·min(-1)·kg(-1)) increased plasma aldosterone levels in WT and in TGR. These changes were completely abolished by the AT(1)R blocker losartan. Of note, glomerulosa cell proliferation, as indicated by the number of Ki-67-positive glomerulosa cells, was stimulated by Ang II in TGR and WT rats; however, this increase was significantly attenuated in TGR overexpressing the AT(2)R. In conclusion, AT(2)R in the adrenal ZG inhibits Ang II-induced cell proliferation but has no obvious lasting effect on the regulation of the aldosterone production at the investigated stages.


Assuntos
Aldosterona/fisiologia , Modelos Animais , Ratos Transgênicos , Receptor Tipo 2 de Angiotensina/metabolismo , Zona Glomerulosa/fisiologia , Angiotensina II/fisiologia , Animais , Proliferação de Células , Regulação da Expressão Gênica/fisiologia , Ratos , Regulação para Cima , Zona Glomerulosa/citologia
7.
Am J Pathol ; 177(6): 3000-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21119215

RESUMO

The PKD/Mhm(cy/+) rat is a widely used animal model for the study of human autosomal dominant polycystic kidney disease, one of the most common genetic disorders, affecting one in 1000 individuals. We identified a new gene, Anks6, which is mutated (Anks6((p.R823W))) in PKD/Mhm(cy/+) rats. The evidence for a causal link between Anks6((p.R823W)) and cystogenesis is still lacking, and the function of Anks6 is presently unknown. This study presents a novel transgenic rat model that overexpresses the mutated 2.8-kb Anks6((p.R823W)) cDNA in the renal tubular epithelium. The transgenic Anks6((p.R823W)) acts in a dominant-negative fashion and causes a predictable polycystic phenotype that largely mimics the general characteristics of the PKD/Mhm(cy/+) rats. Cyst development is accompanied by enhanced c-myc expression and continuous proliferation, apoptosis, and de-differentiation of the renal tubular epithelium as well as by a lack of translational up-regulation of p21 during aging. Using Northern blot analysis and in situ hybridization studies, we identified the first 10 days of age as the period during which transgene expression precedes and initiates cystic growth. Thus, we not only provide the first in vivo evidence for a causal link between the novel Anks6((p.R823W)) gene mutation and polycystic kidney disease, but we also developed a new transgenic rat model that will serve as an important resource for further exploration of the still unknown function of Anks6.


Assuntos
Proteínas Nucleares/genética , Doenças Renais Policísticas/genética , Substituição de Aminoácidos/genética , Animais , Arginina/genética , Expressão Gênica/fisiologia , Predisposição Genética para Doença , Masculino , Proteínas Mutantes/genética , Doenças Renais Policísticas/patologia , Polimorfismo de Nucleotídeo Único/fisiologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Triptofano/genética , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA