Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Insights Imaging ; 15(1): 15, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38228800

RESUMO

OBJECTIVES: To present a framework to develop and implement a fast-track artificial intelligence (AI) curriculum into an existing radiology residency program, with the potential to prepare a new generation of AI conscious radiologists. METHODS: The AI-curriculum framework comprises five sequential steps: (1) forming a team of AI experts, (2) assessing the residents' knowledge level and needs, (3) defining learning objectives, (4) matching these objectives with effective teaching strategies, and finally (5) implementing and evaluating the pilot. Following these steps, a multidisciplinary team of AI engineers, radiologists, and radiology residents designed a 3-day program, including didactic lectures, hands-on laboratory sessions, and group discussions with experts to enhance AI understanding. Pre- and post-curriculum surveys were conducted to assess participants' expectations and progress and were analyzed using a Wilcoxon rank-sum test. RESULTS: There was 100% response rate to the pre- and post-curriculum survey (17 and 12 respondents, respectively). Participants' confidence in their knowledge and understanding of AI in radiology significantly increased after completing the program (pre-curriculum means 3.25 ± 1.48 (SD), post-curriculum means 6.5 ± 0.90 (SD), p-value = 0.002). A total of 75% confirmed that the course addressed topics that were applicable to their work in radiology. Lectures on the fundamentals of AI and group discussions with experts were deemed most useful. CONCLUSION: Designing an AI curriculum for radiology residents and implementing it into a radiology residency program is feasible using the framework presented. The 3-day AI curriculum effectively increased participants' perception of knowledge and skills about AI in radiology and can serve as a starting point for further customization. CRITICAL RELEVANCE STATEMENT: The framework provides guidance for developing and implementing an AI curriculum in radiology residency programs, educating residents on the application of AI in radiology and ultimately contributing to future high-quality, safe, and effective patient care. KEY POINTS: • AI education is necessary to prepare a new generation of AI-conscious radiologists. • The AI curriculum increased participants' perception of AI knowledge and skills in radiology. • This five-step framework can assist integrating AI education into radiology residency programs.

2.
Insights Imaging ; 14(1): 186, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37934344

RESUMO

OBJECTIVES: We sought to investigate if artificial medical images can blend with original ones and whether they adhere to the variable anatomical constraints provided. METHODS: Artificial images were generated with a generative model trained on publicly available standard and low-dose chest CT images (805 scans; 39,803 2D images), of which 17% contained evidence of pathological formations (lung nodules). The test set (90 scans; 5121 2D images) was used to assess if artificial images (512 × 512 primary and control image sets) blended in with original images, using both quantitative metrics and expert opinion. We further assessed if pathology characteristics in the artificial images can be manipulated. RESULTS: Primary and control artificial images attained an average objective similarity of 0.78 ± 0.04 (ranging from 0 [entirely dissimilar] to 1[identical]) and 0.76 ± 0.06, respectively. Five radiologists with experience in chest and thoracic imaging provided a subjective measure of image quality; they rated artificial images as 3.13 ± 0.46 (range of 1 [unrealistic] to 4 [almost indistinguishable to the original image]), close to their rating of the original images (3.73 ± 0.31). Radiologists clearly distinguished images in the control sets (2.32 ± 0.48 and 1.07 ± 0.19). In almost a quarter of the scenarios, they were not able to distinguish primary artificial images from the original ones. CONCLUSION: Artificial images can be generated in a way such that they blend in with original images and adhere to anatomical constraints, which can be manipulated to augment the variability of cases. CRITICAL RELEVANCE STATEMENT: Artificial medical images can be used to enhance the availability and variety of medical training images by creating new but comparable images that can blend in with original images. KEY POINTS: • Artificial images, similar to original ones, can be created using generative networks. • Pathological features of artificial images can be adjusted through guiding the network. • Artificial images proved viable to augment the depth and broadening of diagnostic training.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA