Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(25): 7057-7067, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37389247

RESUMO

Understanding allosteric regulation in biomolecules is of great interest to pharmaceutical research and computational methods emerged during the last decades to characterize allosteric coupling. However, the prediction of allosteric sites in a protein structure remains a challenging task. Here, we integrate local binding site information, coevolutionary information, and information on dynamic allostery into a structure-based three-parameter model to identify potentially hidden allosteric sites in ensembles of protein structures with orthosteric ligands. When tested on five allosteric proteins (LFA-1, p38-α, GR, MAT2A, and BCKDK), the model successfully ranked all known allosteric pockets in the top three positions. Finally, we identified a novel druggable site in MAT2A confirmed by X-ray crystallography and SPR and a hitherto unknown druggable allosteric site in BCKDK validated by biochemical and X-ray crystallography analyses. Our model can be applied in drug discovery to identify allosteric pockets.

2.
Nat Rev Chem ; 6(4): 287-295, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35783295

RESUMO

One aspirational goal of computational chemistry is to predict potent and drug-like binders for any protein, such that only those that bind are synthesized. In this Roadmap, we describe the launch of Critical Assessment of Computational Hit-finding Experiments (CACHE), a public benchmarking project to compare and improve small molecule hit-finding algorithms through cycles of prediction and experimental testing. Participants will predict small molecule binders for new and biologically relevant protein targets representing different prediction scenarios. Predicted compounds will be tested rigorously in an experimental hub, and all predicted binders as well as all experimental screening data, including the chemical structures of experimentally tested compounds, will be made publicly available, and not subject to any intellectual property restrictions. The ability of a range of computational approaches to find novel binders will be evaluated, compared, and openly published. CACHE will launch 3 new benchmarking exercises every year. The outcomes will be better prediction methods, new small molecule binders for target proteins of importance for fundamental biology or drug discovery, and a major technological step towards achieving the goal of Target 2035, a global initiative to identify pharmacological probes for all human proteins.

3.
ACS Med Chem Lett ; 13(4): 681-686, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35450368

RESUMO

Thiazolidinedione PPARγ agonists such as rosiglitazone and pioglitazone are effective antidiabetic drugs, but side effects have limited their use. It has been posited that their positive antidiabetic effects are mainly mediated by the inhibition of the CDK5-mediated Ser273 phosphorylation of PPARγ, whereas the side effects are linked to classical PPARγ agonism. Thus compounds that inhibit PPARγ Ser273 phosphorylation but lack classical PPARγ agonism have been sought as safer antidiabetic therapies. Herein we report the discovery by virtual screening of 10, which is a potent PPARγ binder and in vitro inhibitor of the CDK5-mediated phosphorylation of PPARγ Ser273 and displays negligible PPARγ agonism in a reporter gene assay. The pharmacokinetic properties of 10 are compatible with oral dosing, enabling preclinical in vivo testing, and a 7 day treatment demonstrated an improvement in insulin sensitivity in the ob/ob diabetic mouse model.

4.
J Chem Inf Model ; 61(7): 3667-3680, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34156843

RESUMO

The glucocorticoid receptor (GR) is a nuclear receptor that controls critical biological processes by regulating the transcription of specific genes. There is a known allosteric cross-talk between the ligand and coregulator binding sites within the GR ligand-binding domain that is crucial for the control of the functional response. However, the molecular mechanisms underlying such an allosteric control remain elusive. Here, molecular dynamics (MD) simulations, bioinformatic analysis, and biophysical measurements are integrated to capture the structural and dynamic features of the allosteric cross-talk within the GR. We identified a network of evolutionarily conserved residues that enables the allosteric signal transduction, in agreement with experimental data. MD simulations clarify how such a network is dynamically interconnected and offer a mechanistic explanation of how different peptides affect the intensity of the allosteric signal. This study provides useful insights to elucidate the GR allosteric regulation, ultimately providing a foundation for designing novel drugs.


Assuntos
Peptídeos , Receptores de Glucocorticoides , Regulação Alostérica , Sítio Alostérico , Sítios de Ligação , Humanos , Ligantes , Ligação Proteica , Receptores de Glucocorticoides/metabolismo
5.
J Chem Inf Model ; 61(1): 263-269, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33350828

RESUMO

Cyclic peptides have the potential to bind to challenging targets, which are undruggable with small molecules, but their application is limited by low membrane permeability. Here, using a series of cyclic pentapeptides, we showed that established physicochemical criteria of permeable peptides are heavily violated. We revealed that a dominant core conformation, stabilized by amides' shielding pattern, could guide the design of novel compounds. As a result, counter-intuitive strategies, such as incorporation of polar residues, can be beneficial for permeability. We further find that core globularity is a promising descriptor, which can extend the capability of standard predictive models.


Assuntos
Peptídeos Cíclicos , Peptídeos , Permeabilidade da Membrana Celular , Conformação Molecular , Peptídeos Cíclicos/metabolismo , Permeabilidade
6.
J Chem Inf Model ; 60(11): 5529-5539, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32644807

RESUMO

We present a multistep protocol, combining Monte Carlo and molecular dynamics simulations, for the estimation of absolute binding free energies, one of the most significant challenges in computer-aided drug design. The protocol is based on an initial short enhanced Monte Carlo simulation, followed by clustering of the ligand positions, which serve to identify the most relevant states of the unbinding process. From these states, extensive molecular dynamics simulations are run to estimate an equilibrium probability distribution obtained with Markov State Models, which is subsequently used to estimate the binding free energy. We tested the procedure on two different protein systems, the Plasminogen kringle domain 1 and Urokinase, each with multiple ligands, for an aggregated molecular dynamics length of 760 µs. Our results indicate that the initial sampling of the unbinding events largely facilitates the convergence of the subsequent molecular dynamics exploration. Moreover, the protocol is capable to properly rank the set of ligands examined, albeit with a significant computational cost for the, more realistic, Urokinase complexes. Overall, this work demonstrates the usefulness of combining enhanced sampling methods with regular simulation techniques as a way to obtain more reliable binding affinity estimates.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Entropia , Ligantes , Método de Monte Carlo , Ligação Proteica , Termodinâmica
7.
J Chem Theory Comput ; 15(11): 6243-6253, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31589430

RESUMO

In this study, we present a fully automatic platform based on our Monte Carlo algorithm, the Protein Energy Landscape Exploration method (PELE), for the estimation of absolute protein-ligand binding free energies, one of the most significant challenges in computer aided drug design. Based on a ligand pathway approach, an initial short enhanced sampling simulation is performed to identify reasonable starting positions for more extended sampling. This stepwise approach allows for a significant faster convergence of the free energy estimation using the Markov State Model (MSM) technique. PELE-MSM was applied on four diverse protein and ligand systems, successfully ranking compounds for two systems. Based on the results, current limitations and challenges with physics-based methods in computational structural biology are discussed. Overall, PELE-MSM constitutes a promising step toward computing absolute binding free energies and in their application into drug discovery projects.


Assuntos
Algoritmos , Proteínas/química , Desenho de Fármacos , Ligantes , Cadeias de Markov , Método de Monte Carlo , Ligação Proteica , Proteínas/metabolismo , Termodinâmica
8.
J Med Chem ; 62(3): 1385-1406, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30596500

RESUMO

The mechanism-based risk for hyperkalemia has limited the use of mineralocorticoid receptor antagonists (MRAs) like eplerenone in cardio-renal diseases. Here, we describe the structure and property-driven lead generation and optimization, which resulted in identification of MR modulators ( S)-1 and ( S)-33. Both compounds were partial MRAs but still demonstrated equally efficacious organ protection as eplerenone after 4 weeks of treatment in uni-nephrectomized rats on high-salt diet and aldosterone infusion. Importantly, and in sharp contrast to eplerenone, this was achieved without substantial changes to the urine Na+/K+ ratio after acute treatment in rat, which predicts a reduced risk for hyperkalemia. This work led to selection of ( S)-1 (AZD9977) as the clinical candidate for treating MR-mediated cardio-renal diseases, including chronic kidney disease and heart failure. On the basis of our findings, we propose an empirical model for prediction of compounds with low risk of affecting the urinary Na+/K+ ratio in vivo.


Assuntos
Homeostase/efeitos dos fármacos , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Oxazinas/farmacologia , Potássio/metabolismo , Substâncias Protetoras/farmacologia , Sódio/metabolismo , Animais , Coração/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Masculino , Antagonistas de Receptores de Mineralocorticoides/síntese química , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Estrutura Molecular , Oxazinas/síntese química , Oxazinas/metabolismo , Potássio/urina , Substâncias Protetoras/síntese química , Substâncias Protetoras/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Mineralocorticoides/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Sódio/urina , Relação Estrutura-Atividade
9.
Biophys J ; 112(6): 1147-1156, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28355542

RESUMO

In this study, we performed an extensive exploration of the ligand entry mechanism for members of the steroid nuclear hormone receptor family (androgen receptor, estrogen receptor α, glucocorticoid receptor, mineralocorticoid receptor, and progesterone receptor) and their endogenous ligands. The exploration revealed a shared entry path through the helix 3, 7, and 11 regions. Examination of the x-ray structures of the receptor-ligand complexes further showed two distinct folds of the helix 6-7 region, classified as "open" and "closed", which could potentially affect ligand binding. To improve sampling of the helix 6-7 loop, we incorporated motion modes based on principal component analysis of existing crystal structures of the receptors and applied them to the protein-ligand sampling. A detailed comparison with the anisotropic network model (an elastic network model) highlights the importance of flexibility in the entrance region. While the binding (interaction) energy of individual simulations can be used to score different ligands, extensive sampling further allows us to predict absolute binding free energies and analyze reaction kinetics using Markov state models and Perron-cluster cluster analysis, respectively. The predicted relative binding free energies for three ligands binding to the progesterone receptor are in very good agreement with experimental results and the Perron-cluster cluster analysis highlighted the importance of a peripheral binding site. Our analysis revealed that the flexibility of the helix 3, 7, and 11 regions represents the most important factor for ligand binding. Furthermore, the hydrophobicity of the ligand influences the transition between the peripheral and the active binding site.


Assuntos
Método de Monte Carlo , Movimento , Receptores Citoplasmáticos e Nucleares/metabolismo , Cinética , Ligantes , Cadeias de Markov , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Receptores Citoplasmáticos e Nucleares/química , Termodinâmica , Raios X
10.
ChemMedChem ; 12(1): 50-65, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27897427

RESUMO

The mineralocorticoid receptor (MR) is a nuclear hormone receptor involved in the regulation of body fluid and electrolyte homeostasis. In this study we explore selectivity triggers for a series of nonsteroidal MR antagonists to improve selectivity over other members of the oxosteroid receptor family. A biaryl sulfonamide compound was identified in a high-throughput screening (HTS) campaign. The compound bound to MR with pKi =6.6, but displayed poor selectivity over the glucocorticoid receptor (GR) and the progesterone receptor (PR). Following X-ray crystallography of MR in complex with the HTS hit, a compound library was designed that explored an induced-fit hypothesis that required movement of the Met852 side chain. An improvement in MR selectivity of 11- to 79-fold over PR and 23- to 234-fold over GR was obtained. Given the U-shaped binding conformation, macrocyclizations were explored, yielding a macrocycle that bound to MR with pKi =7.3. Two protein-ligand X-ray structures were determined, confirming the hypothesized binding mode for the designed compounds.


Assuntos
Desenho de Fármacos , Antagonistas de Receptores de Mineralocorticoides/química , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Triagem em Larga Escala , Humanos , Antagonistas de Receptores de Mineralocorticoides/síntese química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Especificidade por Substrato
11.
Future Med Chem ; 8(14): 1739-52, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27577860

RESUMO

AIM: The use of 3D information has shown impact in numerous applications in drug design. However, it is often under-utilized and traditionally limited to specialists. We want to change that, and present an approach making 3D information and molecular modeling accessible and easy-to-use 'for the people'. METHODOLOGY/RESULTS: A user-friendly and collaborative web-based platform (3D-Lab) for 3D modeling, including a blazingly fast virtual screening capability, was developed. 3D-Lab provides an interface to automatic molecular modeling, like conformer generation, ligand alignments, molecular dockings and simple quantum chemistry protocols. 3D-Lab is designed to be modular, and to facilitate sharing of 3D-information to promote interactions between drug designers. Recent enhancements to our open-source virtual reality tool Molecular Rift are described. CONCLUSION: The integrated drug-design platform allows drug designers to instantaneously access 3D information and readily apply advanced and automated 3D molecular modeling tasks, with the aim to improve decision-making in drug design projects.


Assuntos
Desenho de Fármacos , Internet , Modelos Moleculares , Preparações Farmacêuticas/química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Teoria Quântica
12.
Assay Drug Dev Technol ; 14(4): 261-72, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27027223

RESUMO

The peroxisome proliferator-activated receptor gamma (PPARγ) is the target for the thiazolidinedione class of potent insulin-sensitizing drugs, which includes rosiglitazone and pioglitazone. However, their usage has been restricted due to severe side effects. Recent data have shown that specifically inhibiting the cyclin-dependent kinase 5 (Cdk5)-mediated phosphorylation of PPARγ at Ser273 may lead to novel insulin sensitizers with fewer side effects. Here we describe a novel enzyme-linked immunosorbent assay (ELISA) in the 384-well format, which enables screening for PPARγ ligands that inhibit phosphorylation at Ser273 by Cdk5. The assay is robust with a Z-factor > 0.6, demonstrating its suitability for high-throughput screening. We demonstrate the suitability of this assay for profiling of published PPARγ ligands and identification of novel compounds that prevent the Cdk5-mediated phosphorylation of PPARγ at Ser273 in a 622 compound pilot study. Our assay enables the discovery and development of novel therapeutic agents for use in type-2 diabetes. Furthermore, our results in combination with structural analysis of reported PPARγ ligand binding domain X-ray structures give a molecular rationale for the Cdk5-mediated phosphorylation of PPARγ at Ser273.


Assuntos
Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/metabolismo , Ensaios de Triagem em Larga Escala/métodos , PPAR gama/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ensaio de Imunoadsorção Enzimática/métodos , Células HEK293 , Humanos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia
13.
J Chem Inf Model ; 56(4): 774-87, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-26974351

RESUMO

Computer-aided drug design plays an important role in medicinal chemistry to obtain insights into molecular mechanisms and to prioritize design strategies. Although significant improvement has been made in structure based design, it still remains a key challenge to accurately model and predict induced fit mechanisms. Most of the current available techniques either do not provide sufficient protein conformational sampling or are too computationally demanding to fit an industrial setting. The current study presents a systematic and exhaustive investigation of predicting binding modes for a range of systems using PELE (Protein Energy Landscape Exploration), an efficient and fast protein-ligand sampling algorithm. The systems analyzed (cytochrome P, kinase, protease, and nuclear hormone receptor) exhibit different complexities of ligand induced fit mechanisms and protein dynamics. The results are compared with results from classical molecular dynamics simulations and (induced fit) docking. This study shows that ligand induced side chain rearrangements and smaller to medium backbone movements are captured well in PELE. Large secondary structure rearrangements, however, remain challenging for all employed techniques. Relevant binding modes (ligand heavy atom RMSD < 1.0 Å) can be obtained by the PELE method within a few hours of simulation, positioning PELE as a tool applicable for rapid drug design cycles.


Assuntos
Desenho Assistido por Computador , Desenho de Fármacos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica
14.
J Med Chem ; 59(6): 2497-511, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26741166

RESUMO

A novel series of melanin concentrating hormone receptor 1 (MCHr1) antagonists were the starting point for a drug discovery program that culminated in the discovery of 103 (AZD1979). The lead optimization program was conducted with a focus on reducing lipophilicity and understanding the physicochemical properties governing CNS exposure and undesired off-target pharmacology such as hERG interactions. An integrated approach was taken where the key assay was ex vivo receptor occupancy in mice. The candidate compound 103 displayed appropriate lipophilicity for a CNS indication and showed excellent permeability with no efflux. Preclinical GLP toxicology and safety pharmacology studies were without major findings and 103 was taken into clinical trials.


Assuntos
Azetidinas/síntese química , Azetidinas/farmacologia , Oxidiazóis/síntese química , Oxidiazóis/farmacologia , Receptores de Somatostatina/antagonistas & inibidores , Animais , Fármacos Antiobesidade/farmacologia , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Descoberta de Drogas , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Feminino , Lipídeos/química , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Bloqueadores dos Canais de Potássio/síntese química , Bloqueadores dos Canais de Potássio/farmacologia , Relação Estrutura-Atividade
15.
J Comput Aided Mol Des ; 29(12): 1109-22, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26572910

RESUMO

In drug discovery, prediction of binding affinity ahead of synthesis to aid compound prioritization is still hampered by the low throughput of the more accurate methods and the lack of general pertinence of one method that fits all systems. Here we show the applicability of a method based on density functional theory using core fragments and a protein model with only the first shell residues surrounding the core, to predict relative binding affinity of a matched series of mineralocorticoid receptor (MR) antagonists. Antagonists of MR are used for treatment of chronic heart failure and hypertension. Marketed MR antagonists, spironolactone and eplerenone, are also believed to be highly efficacious in treatment of chronic kidney disease in diabetes patients, but is contra-indicated due to the increased risk for hyperkalemia. These findings and a significant unmet medical need among patients with chronic kidney disease continues to stimulate efforts in the discovery of new MR antagonist with maintained efficacy but low or no risk for hyperkalemia. Applied on a matched series of MR antagonists the quantum mechanical based method gave an R(2) = 0.76 for the experimental lipophilic ligand efficiency versus relative predicted binding affinity calculated with the M06-2X functional in gas phase and an R(2) = 0.64 for experimental binding affinity versus relative predicted binding affinity calculated with the M06-2X functional including an implicit solvation model. The quantum mechanical approach using core fragments was compared to free energy perturbation calculations using the full sized compound structures.


Assuntos
Antagonistas de Receptores de Mineralocorticoides/química , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Receptores de Mineralocorticoides/metabolismo , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Ligação Proteica , Teoria Quântica , Receptores de Mineralocorticoides/química
16.
Structure ; 23(12): 2280-2290, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26602186

RESUMO

Steroid receptor drugs have been available for more than half a century, but details of the ligand binding mechanism have remained elusive. We solved X-ray structures of the glucocorticoid and mineralocorticoid receptors to identify a conserved plasticity at the helix 6-7 region that extends the ligand binding pocket toward the receptor surface. Since none of the endogenous ligands exploit this region, we hypothesized that it constitutes an integral part of the binding event. Extensive all-atom unbiased ligand exit and entrance simulations corroborate a ligand binding pathway that gives the observed structural plasticity a key functional role. Kinetic measurements reveal that the receptor residence time correlates with structural rearrangements observed in both structures and simulations. Ultimately, our findings reveal why nature has conserved the capacity to open up this region, and highlight how differences in the details of the ligand entry process result in differential evolutionary constraints across the steroid receptors.


Assuntos
Sequência Conservada , Receptores de Glucocorticoides/química , Receptores de Mineralocorticoides/química , Sequência de Aminoácidos , Sítios de Ligação , Evolução Molecular , Humanos , Dados de Sequência Molecular , Ligação Proteica , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo
17.
J Med Chem ; 55(5): 1817-30, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22185670

RESUMO

Oxadiazoles are five-membered heteroaromatic rings containing two carbons, two nitrogens, and one oxygen atom, and they exist in different regioisomeric forms. Oxadiazoles are frequently occurring motifs in druglike molecules, and they are often used with the intention of being bioisosteric replacements for ester and amide functionalities. The current study presents a systematic comparison of 1,2,4- and 1,3,4-oxadiazole matched pairs in the AstraZeneca compound collection. In virtually all cases, the 1,3,4-oxadiazole isomer shows an order of magnitude lower lipophilicity (log D), as compared to its isomeric partner. Significant differences are also observed with respect to metabolic stability, hERG inhibition, and aqueous solubility, favoring the 1,3,4-oxadiazole isomers. The difference in profile between the 1,2,4 and 1,3,4 regioisomers can be rationalized by their intrinsically different charge distributions (e.g., dipole moments). To facilitate the use of these heteroaromatic rings, novel synthetic routes for ready access of a broad spectrum of 1,3,4-oxadiazoles, under mild conditions, are described.


Assuntos
Oxidiazóis/química , Animais , Células CHO , Simulação por Computador , Cricetinae , Cricetulus , Ciclização , Inibidores das Enzimas do Citocromo P-450 , Bases de Dados Factuais , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Humanos , Técnicas In Vitro , Isomerismo , Microssomos Hepáticos/metabolismo , Oxidiazóis/síntese química , Oxidiazóis/farmacologia , Teoria Quântica , Solubilidade , Eletricidade Estática , Relação Estrutura-Atividade
18.
J Med Chem ; 49(23): 6716-25, 2006 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-17154502

RESUMO

The scope of the current work is to investigate whether structurally similar ligands bind in a similar fashion by exhaustively analyzing experimental data from the protein database (PDB). The complete PDB was searched for pairs of structurally similar ligands binding to the same biological target. The binding sites of the pairs of proteins complexing structurally similar ligands were found to differ in 83% of the cases. The most recurrent structural change among the pairs involves different water molecule architecture. Side-chain movements are observed in half of the pairs, whereas backbone movements rarely occurred. However, two structurally similar ligands generally confirm a high degree of structural conservation. That is, a majority of the ligand pairs occupy the same region in the binding sites, providing support for the use of shape matching in the drug design process. We allow ourselves to draw general conclusions because our data set consists of ligands with drug-like physicochemical properties complexed to a broad spectrum of different protein classes.


Assuntos
Ligantes , Proteínas/química , Cristalografia por Raios X , Bases de Dados de Proteínas , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Água/química
19.
J Med Chem ; 46(5): 872-5, 2003 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-12593667

RESUMO

Two X-ray structures of the GluR2 ligand-binding core in complex with (S)-2-amino-3-(5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid ((S)-ATPA) have been determined with and without Zn(2+) ions. (S)-ATPA induces a domain closure of ca. 21 degrees compared to the apo form. The tert-butyl moiety of (S)-ATPA is buried in a partially hydrophobic pocket and forces the ligand into the glutamate-like binding mode. The structures provide new insight into the molecular basis of agonist selectivity between AMPA and kainate receptors.


Assuntos
Agonistas de Aminoácidos Excitatórios/química , Isoxazóis/química , Propionatos/química , Receptores de AMPA/química , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Ligantes , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas , Receptores de AMPA/agonistas , Estereoisomerismo , Zinco/química
20.
J Med Chem ; 46(2): 214-21, 2003 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-12519060

RESUMO

Ionotropic glutamate receptors (iGluRs) constitute a family of ligand-gated ion channels that are essential for mediating fast synaptic transmission in the central nervous system. This study presents a high-resolution X-ray structure of the competitive antagonist (S)-2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl]propionic acid (ATPO) in complex with the ligand-binding core of the receptor. Comparison with the only previous structure of the ligand-binding core in complex with an antagonist, 6,7-dinitro-2,3-quinoxalinedione (DNQX) (Armstrong, N.; Gouaux, E. Neuron 2000, 28, 165-181), reveals that ATPO and DNQX stabilize an open form of the ligand-binding core by different sets of interactions. Computational techniques are used to quantify the differences between these two ligands and to map the binding site. The isoxazole moiety of ATPO acts primarily as a spacer, and other scaffolds could potentially be used. Whereas agonists induce substantial domain closures compared to the apo structure, ATPO only induces minor conformational changes. These results are consistent with the hypothesis that domain closure is related to receptor activation. To facilitate the design of novel AMPA receptor antagonists, we present a modified model of the binding site that includes key residues involved in ligand recognition.


Assuntos
Antagonistas de Aminoácidos Excitatórios/química , Isoxazóis/química , Organofosfonatos/química , Quinoxalinas/química , Receptores de AMPA/química , Sítios de Ligação , Cristalografia por Raios X , Ligantes , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA