Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(6)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36980209

RESUMO

In addition to disease-associated microglia (DAM), microglia with MHC-II and/or IFN-I signatures may form additional pathogenic subsets that are relevant to neurodegeneration. However, the significance of such MHC-II and IFN-I signatures remains elusive. We demonstrate here that these microglial subsets play intrinsic roles in orchestrating neurotoxic properties of neurotoxic Eomes+ Th cells under the neurodegeneration-associated phase of experimental autoimmune encephalomyelitis (EAE) that corresponds to progressive multiple sclerosis (MS). Microglia acquire IFN-signature after sensing ectopically expressed long interspersed nuclear element-1 (L1) gene. Furthermore, ORF1, an L1-encoded protein aberrantly expressed in the diseased central nervous system (CNS), stimulated Eomes+ Th cells after Trem2-dependent ingestion and presentation in MHC-II context by microglia. Interestingly, administration of an L1 inhibitor significantly ameliorated neurodegenerative symptoms of EAE concomitant with reduced accumulation of Eomes+ Th cells in the CNS. Collectively, our data highlight a critical contribution of new microglia subsets as a neuroinflammatory hub in immune-mediated neurodegeneration.


Assuntos
Encefalomielite Autoimune Experimental , Microglia , Animais , Microglia/metabolismo , Encefalomielite Autoimune Experimental/patologia , Sistema Nervoso Central/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo
2.
Sci Rep ; 13(1): 1956, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732356

RESUMO

The ubiquitin-proteasome system (UPS) is a proteolytic pathway that is essential for life maintenance and vital functions, and its disruption causes serious impairments, e.g., disease development. Thus, the UPS is properly regulated. Here we show novel UPS-related factors: the fragile X mental retardation 1 (FMR1) and Fmr1 autosomal homolog 1 (FXR1) proteins and discs large MAGUK scaffold protein 4 (Dlg4) mRNA, which are associated with Fragile X syndrome, are involved in UPS activity. Fmr1-, Fxr1- and Dlg4-knockdown and Fmr1- and Fxr1-knockdown resulted in increased ubiquitination and proteasome activity, respectively. FXR1 protein was further confirmed to be associated with proteasomes, and Dlg4 mRNA itself was found to be involved in the UPS. Knockdown of these genes also affected neurite outgrowth. These findings provide new insights into the regulatory mechanism of the UPS and into the interpretation of the pathogenesis of diseases in which these genes are involved as UPS-related factors.


Assuntos
Síndrome do Cromossomo X Frágil , Humanos , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Proteínas de Ligação a RNA/genética , Proteína 4 Homóloga a Disks-Large/metabolismo
3.
J Cachexia Sarcopenia Muscle ; 13(4): 2088-2101, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35718758

RESUMO

BACKGROUND: Cachexia is a life-threatening condition observed in several pathologies, such as cancer or chronic diseases. Interleukin 10 (Il10) gene transfer is known to improve cachexia by downregulating Il6. Here, we used an IL10-knockout mouse model to simulate cachexia and investigate the effects of eggshell membrane (ESM), a resistant protein, on general pre-cachexia symptoms, which is particularly important for the development of cachexia therapeutics. METHODS: Five-week-old male C57BL6/J mice were fed an AIN-93G powdered diet (WT), and 5-week-old male B6.129P2-Il10 < tm1Cgn>/J (IL10-/- ) mice were fed either the AIN-93G diet (KO) or an 8% ESM-containing diet (KOE) for 28 weeks. The tissue weight and levels of anaemia-, blood glucose-, lipid metabolism-, and muscular and colonic inflammation-related biochemical markers were measured. Transcriptomic analysis on liver and colon mucus and proteomic analysis on skeletal muscle were performed. Ingenuity Pathway Analysis was used to identify molecular pathways and networks. Caecal short-chain fatty acids (SCFAs) were identified using HPLC, and caecal bacteria DNA were subjected to metagenomic analysis. Flow cytometry analysis was performed to measure the CD4+ IL17+ T cells in mesenteric lymph nodes. RESULTS: The body weight, weight of gastrocnemius muscle and fat tissues, colon weight/length ratio, plasma HDL and NEFA, muscular PECAM-1 levels (P < 0.01), plasma glucose and colonic mucosal myeloperoxidase activity (P < 0.05) and T helper (Th) 17 cell abundance (P = 0.071) were improved in KOE mice over KO mice. Proteomic analysis indicated the protective role of ESM in muscle weakness and maintenance of muscle formation (>1.5-fold). Transcriptomic analysis revealed that ESM supplementation suppressed the LPS/IL1-mediated inhibition of RXR function pathway in the liver and downregulated the colonic mucosal expression of chemokines and Th cell differentiation-related markers (P < 0.01) by suppressing the upstream BATF pathway. Analysis of the intestinal microenvironment revealed that ESM supplementation ameliorated the microbial alpha diversity and the abundance of microbiota associated with the degree of inflammation (P < 0.05) and increased the level of total organic acids, particularly of SCFAs such as butyrate (2.3-fold), which could inhibit Th1 and Th17 production. CONCLUSIONS: ESM supplementation ameliorated the chief symptoms of cachexia, including anorexia, lean fat tissue mass, skeletal muscle wasting and reduced physical function. ESM also improved colon and skeletal muscle inflammation, lipid metabolism and microbial dysbiosis. These results along with the suppressed differentiation of Th cells could be associated with the beneficial intestinal microenvironment and, subsequently, attenuation of pre-cachexia. Our findings provide insights into the potential of ESM in complementary interventions for pre-cachexia prevention.


Assuntos
Caquexia , Casca de Ovo , Microbioma Gastrointestinal , Linfócitos T Auxiliares-Indutores , Animais , Caquexia/prevenção & controle , Diferenciação Celular , Dieta , Inflamação , Interleucina-10 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteômica , Linfócitos T Auxiliares-Indutores/citologia
4.
iScience ; 25(5): 104278, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35573205

RESUMO

Neurodegeneration is a process involving both cell autonomous and non-cell autonomous neuron loss, followed by a collapse of neural networks, but its pathogenesis is poorly understood. We have previously demonstrated that Eomes-positive helper T (Eomes + Th) cells recognizing LINE-1(L1)-derived prototypic antigen ORF1 mediate neurotoxicity associated with the neurodegenerative pathology of experimental autoimmune encephalomyelitis (EAE). Here, we show that Eomes + Th cells accumulate in the CNS of mouse models of authentic neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD), and secrete the neurotoxic granzyme B after encounter with ORF1 antigen. Multimodal derepression of neuronal L1 transcription is observed in EAE and ALS/AD models during neurodegeneration in active and cell cycle-mediated manner, respectively. These data suggest that the adventitious concurrence of immune-mediated neurodegenerative traits by Eomes + Th cells and ectopic expression of L1-derived antigen(s) in the inflamed CNS may materialize a communal and previously unappreciated pathogenesis of neurodegeneration.

5.
Aging Dis ; 12(6): 1451-1461, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34527421

RESUMO

Multiple sclerosis (MS) is an autoimmune neurodegenerative disease of the central nervous system (CNS) characterized by multiple demyelinating lesions in the spinal cord and brain. Neuronal disruption caused by myelin loss or demyelination, which may accompany axonal changes, leads to multiple neurological symptoms. They may transiently appear for weeks during periods of disease worsening (relapse) in relapsing-remitting form of MS (RRMS). Although a number of genetic, metabolic and environmental factors influencing the development of MS have been identified, the precise mechanisms involved in the CNS tissue damage in MS are still poorly understood. Recent studies have revealed a significant role of circulating extracellular vesicles (EVs) in many diseases. EVs are known to serve as a cellular communication tool between two cell types either in close proximity or in different parts of the body. During the recent development in understanding of the pathogenesis of MS, studies have revealed the possible role of EVs in MS. Furthermore, circulating EVs can be used as a biomarker for monitoring disease progression and activity of MS, and they can also be therapeutic reagents or targets of therapy. In this review we overview and discuss in detail about generation of EVs and their diversified roles in MS.

6.
Commun Biol ; 4(1): 427, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782502

RESUMO

Parabiosis experiments suggest that molecular factors related to rejuvenation and aging circulate in the blood. Here, we show that miR-199-3p, which circulates in the blood as a cell-free miRNA, is significantly decreased in the blood of aged mice compared to young mice; and miR-199-3p has the ability to enhance myogenic differentiation and muscle regeneration. Administration of miR-199 mimics, which supply miR-199-3p, to aged mice resulted in muscle fiber hypertrophy and delayed loss of muscle strength. Systemic administration of miR-199 mimics to mdx mice, a well-known animal model of Duchenne muscular dystrophy (DMD), markedly improved the muscle strength of mice. Taken together, cell-free miR-199-3p in the blood may have an anti-aging effect such as a hypertrophic effect in aged muscle fibers and could have potential as a novel RNA therapeutic for DMD as well as age-related diseases. The findings provide us with new insights into blood-circulating miRNAs as age-related molecules.


Assuntos
Envelhecimento/fisiologia , MicroRNAs/metabolismo , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/genética , Regeneração/fisiologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/fisiopatologia , Regeneração/genética
7.
Drug Discov Ther ; 15(2): 66-72, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33716240

RESUMO

Curcumin, a major component of turmeric, is known to exhibit multiple biological functions including antitumor activity. We previously reported that the mitogen-activated protein kinase (MAPK) scaffold protein c-Jun NH2-terminal kinase (JNK)-associated leucine zipper protein (JLP) reduces curcumin-induced cell death by modulating p38 MAPK and autophagy through the regulation of lysosome positioning. In this study, we investigated the role of JNK/stress-activated protein kinase-associated protein 1 (JSAP1), a JLP family member, in curcumin-induced stress, and found that JSAP1 also attenuates curcumin-induced cell death. However, JSAP1 knockout showed no or little effect on the activation of JNK and p38 MAPKs in response to curcumin. In addition, small molecule inhibitors of JNK and p38 MAPKs did not increase curcumin-induced cell death. Furthermore, JSAP1 depletion did not impair lysosome positioning and autophagosome-lysosome fusion. Instead, we noticed substantial autolysosome accumulation accompanied by an inefficient autophagic flux in JSAP1 knockout cells. Taken together, these results indicate that JSAP1 is involved in curcumin-induced cell death differently from JLP, and may suggest that JSAP1 plays a role in autophagosome degradation and its dysfunction results in enhanced cell death. The findings of this study may contribute to the development of novel therapeutic approaches using curcumin for cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Antineoplásicos/farmacologia , Curcumina/farmacologia , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/efeitos adversos , Autofagia/efeitos dos fármacos , Autofagia/genética , Técnicas de Cultura de Células , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Curcumina/efeitos adversos , Desenvolvimento de Medicamentos/métodos , Humanos , Zíper de Leucina/genética , Lisossomos/efeitos dos fármacos , Lisossomos/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias/tratamento farmacológico , Proteínas do Tecido Nervoso/metabolismo , Substâncias Protetoras , Espécies Reativas de Oxigênio/metabolismo
8.
Food Sci Nutr ; 9(3): 1452-1459, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33747459

RESUMO

SCOPE: We previously demonstrated that protein restriction in utero induced salt-sensitive hypertension and changed renal levels of angiotensin type 2 receptor (AT2R) in Stroke-Prone Spontaneously Hypertensive Rat (SHRSP). Here, we investigated if this characteristic alteration of AT2R is related to AT2R DNA methylation profiles. METHODS AND RESULTS: First, we examined the relation between AT2R DNA methylation and its promoter activity in vitro. Luciferase assays revealed a negative correlation between these two variables. Next, we fed SHRSP dams and grand-dams a control 20% casein diet or a 9% casein diet during pregnancy. Adult offspring and grand-offspring were supplied either water or 1% saline solution for 2 weeks. Renal AT2R promoter DNA near the TATA-box was hypomethylated, mRNA expression was suppressed, and protein expression tended to be higher, in adult offspring of mothers fed a low casein diet. Moreover, adult grand-offspring exhibited high blood pressure after salt loading, along with suppressed transcription of AT2R mRNA and elevated translated protein. CONCLUSIONS: Under a fetal environment of protein restriction, the increase in protein expression due to hypomethylation of the AT2R promoter region occurs as a response to increased salt sensitivity, and controlling this mechanism may be important for the prevention of hypertension.

9.
Biochem Biophys Res Commun ; 522(3): 697-703, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31787236

RESUMO

Previous studies have established the antitumor activity of curcumin, a major component of turmeric. Increasing evidence indicates that curcumin induces autophagy, the activation of mitogen-activated protein kinase (MAPK) intracellular signaling pathways, and reactive oxygen species (ROS)-mediated cell death. The c-Jun NH2-terminal kinase (JNK)-associated leucine zipper protein (JLP), a scaffold protein for MAPK signaling pathways, has been identified as a candidate biomarker for cancer. In this study, we explored the role of JLP in curcumin-induced cancer cell death. We found that JLP knockdown (KD) increases cell death and intracellular ROS levels. Furthermore, JLP KD impaired lysosomal accumulation around perinuclear regions, which led to the inhibition of autophagosome-lysosome fusion, and attenuated p38 MAPK activation in curcumin-treated cells. The decreases in cell viability and p38 MAPK activation were reversed by expressing wild-type JLP but not a JLP mutant lacking the p38 MAPK-binding domain. In addition, the inactivation of a key gene involved in autophagy increased sensitivity to curcumin-induced cell death. Together, these results suggest that JLP mediates the induction of autophagy by regulating lysosome positioning and p38 MAPK signaling, indicating an overall protective role in curcumin-induced ROS-mediated cancer cell death.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/farmacologia , Curcumina/farmacologia , Neoplasias/tratamento farmacológico , Autofagia/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Proc Natl Acad Sci U S A ; 116(42): 21131-21139, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31570595

RESUMO

Induction of eomesodermin-positive CD4+ T cells (Eomes+ T helper [Th] cells) has recently been correlated with the transition from an acute stage to a later stage of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Moreover, these cells' pathogenic role has been experimentally proven in EAE. While exploring how the pathogenic Eomes+ Th cells are generated during the course of EAE, we unexpectedly found that B cells and MHC class II+ myeloid cells isolated from the late EAE lesions strikingly up-regulated the expression of prolactin (PRL). We demonstrate that such PRL-producing cells have a unique potential to induce Eomes+ Th cells from naïve T cells ex vivo, and that anti-MHC class II antibody could block this process. Furthermore, PRL levels in the cerebrospinal fluid were significantly increased in the late phase of EAE, and blocking the production of PRL by bromocriptine or Zbtb20-specific siRNA significantly reduced the numbers of Eomes+ Th cells in the central nervous system (CNS) and ameliorated clinical signs in the later phase of EAE. The PRL dependency of Eomes+ Th cells was confirmed in a series of in vitro and ex vivo experiments. Collectively, these results indicate that extrapituitary PRL plays a crucial role in the CNS inflammation mediated by pathogenic Eomes+ Th cells. Cellular interactions involving PRL-producing immune cells could be considered as a therapeutic target for the prevention of chronic neuroinflammation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Sistema Nervoso Central/imunologia , Inflamação/imunologia , Prolactina/imunologia , Proteínas com Domínio T/imunologia , Animais , Linfócitos B/imunologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Células Mieloides/imunologia
11.
PLoS One ; 13(8): e0201796, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30075033

RESUMO

Gefitinib and erlotinib are epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs). Although EGFR-TKIs are effective as anti-cancer drugs, cancer cells sometimes gain tolerance to the drugs. Previous studies suggested that the fibroblast growth factor receptor (FGFR)-signaling pathway could serve as compensation for the EGFR-signaling pathway inhibited by EGFR-TKIs. Our study further suggested that FGF2, a FGFR ligand, leaked out from naïve cells killed by gefitinib could initiate the FGFR-signaling pathway in surviving cells; i.e., altruistic survival may occur in naïve cells immediately after EGFR-TKI treatment. Altruistic survival may be temporal, and cells need to change their gene regulation toward gaining resistance to EGFR-TKIs. Changes in such gene regulation after EGFR-TKI treatment are poorly understood. In this study, we examined early events of such gene regulation changes in human adenocarcinoma PC-9 cells that are capable of changing their nature from susceptibility to resistance to EFGR-TKIs. Our study indicated that activation of nuclear factor-kappa B (NF-κB) occurred in the cells immediately after EGFR-TKI treatment and also by gene silencing against oncogenic EGFR; and, MG132 treatment for inhibiting NF-κB activation affected cell viability. Taken together, our findings (including the previous study) suggest that altruistic survival and NF-κB activation might be vital for initiating the acquisition of EGFR-TKI resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , NF-kappa B/metabolismo , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Fator de Crescimento Epidérmico/antagonistas & inibidores , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Interferência de RNA , Fatores de Tempo
12.
Mol Ther Nucleic Acids ; 11: 79-90, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858092

RESUMO

Huntington's disease (HD) is an intractable neurodegenerative disorder caused by mutant Huntingtin (HTT) proteins that adversely affect various biomolecules and genes. MicroRNAs (miRNAs), which are functional small non-coding RNAs, are also affected by mutant HTT proteins. Here, we show amelioration in motor function and lifespan of HD-model mice, R6/2 mice, by supplying miR-132 to HD brains using a recombinant adeno-associated virus (rAAV) miRNA expression system. miR-132 is an miRNA related to neuronal maturation and function, but the level of miR-132 in the brain of R6/2 mice was significantly lower than that of wild-type mice. Our miR-132 supplemental treatment, i.e., supplying miR-132 to the brain, produced symptomatic improvement or retarded disease progression in R6/2 mice; interestingly, it had little effect on disease-causing mutant HTT mRNA expression and its products. Therefore, the findings suggest that there may be a therapeutic way to treat HD without inhibiting and/or repairing disease-causing HTT genes and gene products. Although miR-132 supplement may not be a definitive treatment for HD, it may become a therapeutic method for relieving HD symptoms and delaying HD progression.

13.
J Exp Neurosci ; 12: 1179069518764892, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29623002

RESUMO

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, in which myelin and oligodendrocytes are the main targets recognized by inflammatory CD4+ T cells reactive to myelin peptides. Regulatory CD4+ T (Treg) cells normally keep homeostasis of the immune system by inhibiting detrimental effects of inflammatory T cells. However, Treg cells are reduced in patients with MS for unknown reason. This commentary highlights a novel function of circulating exosomes to inhibit the differentiation of Treg cells in MS. Our recent work has demonstrated that the circulating exosomes, a member of extracellular vesicles, of patients with MS exert this effect by transferring let-7i to naive CD4+ T cells. The transferred let-7i subsequently causes a decreased expression of insulin like growth factor 1 receptor (IGF1R) and transforming growth factor ß receptor 1 (TGFBR1), leading to the inhibition of Treg cell differentiation. Thus, extrinsic microRNAs transferred by exosomes might have an active role in triggering autoimmune diseases. We hypothesize that extracellular vesicles including exosomes can be a communication tool between the gut microbiota and the host immune system. Further research in this area will expand the knowledge about the precise mechanism of autoimmune diseases and can lead to a new therapeutic approach.

14.
Methods Mol Biol ; 1733: 181-192, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29435933

RESUMO

MicroRNAs (miRNAs) are functional small noncoding RNAs that work as mediators in gene silencing and that play important roles in gene regulation. A number of miRNAs have been found and their expression profiles have been examined by means of various microarray systems and real-time polymerase chain reaction (PCR) systems. Conventional microarrays as well as real-time PCR are able to detect existing miRNAs, in which inactive miRNAs that hardly contribute to gene silencing may be also contained. Here, we describe a comprehensive miRNA bioassay system with reporter genes for the detection of active miRNAs that are present in the RNA-induced silencing complexes, and actually working as mediators in gene silencing.


Assuntos
Regulação da Expressão Gênica , Inativação Gênica , MicroRNAs/genética , Animais , Linhagem Celular , Genes Reporter , Vetores Genéticos/genética , Humanos , Transfecção
15.
Nat Commun ; 9(1): 17, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29295981

RESUMO

Multiple sclerosis (MS) is a T cell-mediated autoimmune disease of the central nervous system. Foxp3+ regulatory T (Treg) cells are reduced in frequency and dysfunctional in patients with MS, but the underlying mechanisms of this deficiency are unclear. Here, we show that induction of human IFN-γ-IL-17A-Foxp3+CD4+ T cells is inhibited in the presence of circulating exosomes from patients with MS. The exosomal miRNA profile of patients with MS differs from that of healthy controls, and let-7i, which is markedly increased in patients with MS, suppresses induction of Treg cells by targeting insulin like growth factor 1 receptor (IGF1R) and transforming growth factor beta receptor 1 (TGFBR1). Consistently, the expression of IGF1R and TGFBR1 on circulating naive CD4+ T cells is reduced in patients with MS. Thus, our study shows that exosomal let-7i regulates MS pathogenesis by blocking the IGF1R/TGFBR1 pathway.


Assuntos
Exossomos/imunologia , MicroRNAs/imunologia , Esclerose Múltipla/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Exossomos/genética , Exossomos/metabolismo , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Humanos , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-17/metabolismo , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Esclerose Múltipla/sangue , Esclerose Múltipla/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptor IGF Tipo 1 , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Somatomedina/genética , Receptores de Somatomedina/imunologia , Receptores de Somatomedina/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/imunologia , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Linfócitos T Reguladores/metabolismo , Transcriptoma/imunologia
16.
Biochem Biophys Res Commun ; 479(2): 393-397, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27659708

RESUMO

Acquired drug resistance is a major problem in chemotherapy, and understanding of the mechanism, by which naïve cells defend themselves from drugs when the cells exposed to the drugs for the first time, may provide a solution of the problem. Gefitinib is an epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor, and used as an anticancer drug; however, gefitinib treatment may sometimes lead cancer cells gradually into a gefitinib-tolerance. Here we describe that human adenocarcinoma PC-9 cells even under the presence of gefitinib were able to survive by activating another signaling pathway involving fibroblast growth factor receptor (FGFR) and its signaling molecule, FGF2; and further suggest that the FGF2 for initiating the pathway might be supplied from neighboring cells which were killed by gefitinib, i.e., the survival might be founded on neighbors' sacrifice in an early stage of gefitinib treatment. Our findings suggested that whether cells had a chance to encounter to survival factors such as FGF2 soon after gefitinib treatment might be an important crossroads for the cells for survival and for gaining a gefitinib tolerance.


Assuntos
Adenocarcinoma/patologia , Morte Celular , Quinazolinas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Gefitinibe , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Resultado do Tratamento
17.
Nat Commun ; 6: 8437, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26436530

RESUMO

Development of acute experimental autoimmune encephalomyelitis (EAE) depends on Th17 cells expressing the nuclear factor NR4A2. However, in mice lacking NR4A2 in T cells, a late-onset disease is still inducible, despite a great reduction in acute inflammation. We here reveal that development of this late onset disease depends on cytotoxic T-cell-like CD4(+) T cells expressing the T-box transcription factor Eomesodermin (Eomes). T-cell-specific deletion of the Eomes gene remarkably ameliorates the late-onset EAE. Strikingly, similar Eomes(+) CD4(+) T cells are increased in the peripheral blood and cerebrospinal fluid from patients in a progressive state of multiple sclerosis. Collective data indicate an involvement of granzyme B and protease-activated receptor-1 in the neuroinflammation mediated by Eomes(+) CD4(+) T cells.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Granzimas/imunologia , Esclerose Múltipla Crônica Progressiva/imunologia , Receptor PAR-1/imunologia , Proteínas com Domínio T/imunologia , Células Th17/imunologia , Adulto , Animais , Encefalomielite Autoimune Experimental/genética , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/imunologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/imunologia , Proteínas com Domínio T/genética , Linfócitos T Auxiliares-Indutores/imunologia , Adulto Jovem
18.
Sci Rep ; 5: 12684, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26239075

RESUMO

Brain-derived neurotrophic factor (BDNF) is essential for neuronal survival, differentiation, and functions in the central nervous system (CNS). Because BDNF protein is sorted into secretory vesicles at the trans-Golgi network in the cell body after translation, transport of BDNF-containing vesicles to the secretion sites is an important process for its function. Here we examined the effect of dexamethasone (DEX), a synthetic glucocorticoid, on BDNF-containing vesicle transport and found that DEX decreased the proportion of stationary vesicles and increased velocity of the microtubule-based vesicle transport in dendrites of cortical neurons. Furthermore, DEX increased huntingtin (Htt) protein levels via glucocorticoid receptor (GR) activation, and reduction in the amount of Htt by a specific shRNA reversed the action of DEX on BDNF vesicle transport. Given that Htt protein is a positive regulator for the microtubule-dependent vesicular transport in neurons, our data suggest that glucocorticoid stimulates BDNF vesicle transport through upregulation of Htt protein levels.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Neurônios/efeitos dos fármacos , Vesículas Transportadoras/efeitos dos fármacos , Rede trans-Golgi/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Transporte Biológico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Regulação da Expressão Gênica , Proteína Huntingtina , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/ultraestrutura , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica , Vesículas Transportadoras/metabolismo , Rede trans-Golgi/metabolismo
19.
Mol Ther Nucleic Acids ; 4: e241, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25965551

RESUMO

The α-synuclein (SNCA) gene is a responsible gene for Parkinson's disease (PD); and not only nucleotide variations but also overexpression of SNCA appears to be involved in the pathogenesis of PD. A specific inhibition against mutant SNCA genes carrying nucleotide variations may be feasible by a specific silencing such as an allele-specific RNA interference (RNAi); however, there is no method for restoring the SNCA overexpression to a normal level. Here, we show that an atypical RNAi using small interfering RNAs (siRNAs) that confer a moderate level of gene silencing is capable of controlling overexpressed SNCA genes to return to a normal level; named "expression-control RNAi" (ExCont-RNAi). ExCont-RNAi exhibited little or no significant off-target effects in its treated PD patient's fibroblasts that carry SNCA triplication. To further assess the therapeutic effect of ExCont-RNAi, PD-model flies that carried the human SNCA gene underwent an ExCont-RNAi treatment. The treated PD-flies demonstrated a significant improvement in their motor function. Our current findings suggested that ExCont-RNAi might be capable of becoming a novel therapeutic procedure for PD with the SNCA overexpression, and that siRNAs conferring a moderate level of gene silencing to target genes, which have been abandoned as useless siRNAs so far, might be available for controlling abnormally expressed disease-causing genes without producing adverse effects.

20.
PLoS One ; 9(7): e103130, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25068899

RESUMO

Heat shock, sudden change in temperature, triggers various responses in cells for protecting the cells from such a severe circumstance. Here we investigated gene silencing mediated by endogenous microRNAs (miRNAs) in mammalian cells exposed to a mild hyperthermia, by means of miRNA activity assay using a luciferase reporter gene as well as miRNA expression analysis using a DNA microarray. Our findings indicated that the gene silencing activities involving miRNAs were enhanced without increasing in their expression levels under heat-stress conditions. Additionally, the gene silencing activity appeared to be independent of the cytoprotective action involving heat shock proteins that are immediately activated in heat-shocked cells and that function as molecular chaperons for restoring heat-denatured proteins to normal proteins. Our current findings suggested the possibility that gene silencing involving endogenous miRNAs might play a subsidiary role in heat-shocked cells for an aggressive inhibition of the expression of heat-denatured proteins.


Assuntos
Regulação da Expressão Gênica , Inativação Gênica , Resposta ao Choque Térmico/genética , MicroRNAs/genética , Proteínas Argonautas/genética , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico HSP90/genética , Células HeLa , Fatores de Transcrição de Choque Térmico , Humanos , Interferência de RNA , Ribonuclease III/genética , Transdução de Sinais , Fatores de Transcrição/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA