Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Sci Immunol ; 9(96): eadl2388, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848343

RESUMO

Professional phagocytes like neutrophils and macrophages tightly control what they consume, how much they consume, and when they move after cargo uptake. We show that plasma membrane abundance is a key arbiter of these cellular behaviors. Neutrophils and macrophages lacking the G protein subunit Gß4 exhibited profound plasma membrane expansion, accompanied by marked reduction in plasma membrane tension. These biophysical changes promoted the phagocytosis of bacteria, fungus, apoptotic corpses, and cancer cells. We also found that Gß4-deficient neutrophils are defective in the normal inhibition of migration following cargo uptake. Sphingolipid synthesis played a central role in these phenotypes by driving plasma membrane accumulation in cells lacking Gß4. In Gß4 knockout mice, neutrophils not only exhibited enhanced phagocytosis of inhaled fungal conidia in the lung but also increased trafficking of engulfed pathogens to other organs. Together, these results reveal an unexpected, biophysical control mechanism central to myeloid functional decision-making.


Assuntos
Membrana Celular , Camundongos Knockout , Fagocitose , Animais , Fagocitose/imunologia , Membrana Celular/metabolismo , Membrana Celular/imunologia , Camundongos , Células Mieloides/imunologia , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Macrófagos/imunologia
2.
J Clin Invest ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696257

RESUMO

We describe a previously-unappreciated role for Bruton's tyrosine kinase (BTK) in fungal immune surveillance against aspergillosis, an unforeseen complication of BTK inhibitors (BTKi) used for treating B-cell lymphoid malignancies. We studied BTK-dependent fungal responses in neutrophils from diverse populations, including healthy donors, BTKi-treated patients, and X-linked agammaglobulinemia patients. Upon fungal exposure, BTK was activated in human neutrophils in a TLR2-, Dectin-1-, and FcγR-dependent manner, triggering the oxidative burst. BTK inhibition selectively impeded neutrophil-mediated damage to Aspergillus hyphae, primary granule release, and the fungus-induced oxidative burst by abrogating NADPH oxidase subunit p40phox and GTPase RAC2 activation. Moreover, neutrophil-specific Btk deletion in mice enhanced aspergillosis susceptibility by impairing neutrophil function, not recruitment or lifespan. Conversely, GM-CSF partially mitigated these deficits by enhancing p47phox activation. Our findings underline the crucial role of BTK signaling in neutrophils for antifungal immunity and provide a rationale for GM-CSF use to offset these deficits in susceptible patients.

3.
Nat Microbiol ; 9(6): 1555-1565, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38698178

RESUMO

The detection of oral bacteria in faecal samples has been associated with inflammation and intestinal diseases. The increased relative abundance of oral bacteria in faeces has two competing explanations: either oral bacteria invade the gut ecosystem and expand (the 'expansion' hypothesis), or oral bacteria transit through the gut and their relative increase marks the depletion of other gut bacteria (the 'marker' hypothesis). Here we collected oral and faecal samples from mouse models of gut dysbiosis (antibiotic treatment and DSS-induced colitis) and used 16S ribosomal RNA sequencing to determine the abundance dynamics of oral bacteria. We found that the relative, but not absolute, abundance of oral bacteria increases, reflecting the 'marker' hypothesis. Faecal microbiome datasets from diverse patient cohorts, including healthy individuals and patients with allogeneic haematopoietic cell transplantation or inflammatory bowel disease, consistently support the 'marker' hypothesis and explain associations between oral bacterial abundance and patient outcomes consistent with depleted gut microbiota. By distinguishing between the two hypotheses, our study guides the interpretation of microbiome compositional data and could potentially identify cases where therapies are needed to rebuild the resident microbiome rather than protect against invading oral bacteria.


Assuntos
Bactérias , Disbiose , Fezes , Microbioma Gastrointestinal , Boca , RNA Ribossômico 16S , Fezes/microbiologia , Humanos , Animais , Camundongos , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Disbiose/microbiologia , Boca/microbiologia , Colite/microbiologia , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/microbiologia , Antibacterianos/farmacologia , Camundongos Endogâmicos C57BL , Feminino , Sulfato de Dextrana
4.
Nat Commun ; 15(1): 51, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168093

RESUMO

Linking clinical multi-omics with mechanistic studies may improve the understanding of rare cancers. We leverage two precision oncology programs to investigate rhabdomyosarcoma with FUS/EWSR1-TFCP2 fusions, an orphan malignancy without effective therapies. All tumors exhibit outlier ALK expression, partly accompanied by intragenic deletions and aberrant splicing resulting in ALK variants that are oncogenic and sensitive to ALK inhibitors. Additionally, recurrent CKDN2A/MTAP co-deletions provide a rationale for PRMT5-targeted therapies. Functional studies show that FUS-TFCP2 blocks myogenic differentiation, induces transcription of ALK and truncated TERT, and inhibits DNA repair. Unlike other fusion-driven sarcomas, TFCP2-rearranged tumors exhibit genomic instability and signs of defective homologous recombination. DNA methylation profiling demonstrates a close relationship with undifferentiated sarcomas. In two patients, sarcoma was preceded by benign lesions carrying FUS-TFCP2, indicating stepwise sarcomagenesis. This study illustrates the potential of linking precision oncology with preclinical research to gain insight into the classification, pathogenesis, and therapeutic vulnerabilities of rare cancers.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Humanos , Multiômica , Medicina de Precisão , Fatores de Transcrição/genética , Sarcoma/genética , Sarcoma/terapia , Sarcoma/diagnóstico , Proteína EWS de Ligação a RNA/genética , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/terapia , Receptores Proteína Tirosina Quinases , Biomarcadores Tumorais/genética , Proteínas de Fusão Oncogênica/genética , Proteína-Arginina N-Metiltransferases , Proteínas de Ligação a DNA/genética
5.
bioRxiv ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38260364

RESUMO

Aspergillus fumigatus causes life-threatening mold pneumonia in immune compromised patients, particularly in those with quantitative or qualitative defects in neutrophils. While innate immune cell crosstalk licenses neutrophil antifungal activity in the lung, the role of epithelial cells in this process is unknown. Here, we find that that surfactant protein C (SPC)-expressing lung epithelial cells integrate infection-induced IL-1 and type III interferon signaling to produce granulocyte-macrophage colony-stimulating factor (GM-CSF) preferentially at local sites of fungal infection and neutrophil influx. Using in vivo models that distinguish the role of GM-CSF during acute infection from its homeostatic function in alveolar macrophage survival and surfactant catabolism, we demonstrate that epithelial-derived GM-CSF increases the accumulation and fungicidal activity of GM-CSF-responsive neutrophils, with the latter being essential for host survival. Our findings establish SPC + epithelial cells as a central player in regulating the quality and strength of neutrophil-dependent immunity against inhaled mold pathogens. HIGHLIGHTS: GM-CSF is essential for host defense against A. fumigatus in the lung IL-1 and IFN-λ promote GM-CSF production by lung epithelial cells in parallelEpithelial cell-derived GM-CSF increases neutrophil accumulation and fungal killing capacityEpithelial cells preferentially upregulate GM-CSF in local sites of inflammation.

6.
mSphere ; 8(6): e0030523, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37823656

RESUMO

IMPORTANCE: Aspergillus fumigatus can cause a life-threatening infection known as invasive pulmonary aspergillosis (IPA), which is marked by fungus-attributable mortality rates of 20%-30%. Individuals at risk for IPA harbor genetic mutations or incur pharmacologic defects that impair myeloid cell numbers and/or function, exemplified by bone marrow transplant recipients, patients that receive corticosteroid therapy, or patients with chronic granulomatous disease (CGD). However, treatments for Aspergillus infections remain limited, and resistance to the few existing drug classes is emerging. Recently, the World Health Organization classified A. fumigatus as a critical priority fungal pathogen. Our cell death research identifies an important aspect of fungal biology that impacts susceptibility to leukocyte killing. Furthering our understanding of mechanisms that mediate the outcome of fungal-leukocyte interactions will increase our understanding of both the underlying fungal biology governing cell death and innate immune evasion strategies utilized during mammalian infection pathogenesis. Consequently, our studies are a critical step toward leveraging these mechanisms for novel therapeutic advances.


Assuntos
Aspergillus fumigatus , Aspergilose Pulmonar Invasiva , Animais , Humanos , Aspergillus fumigatus/metabolismo , Citocromos c/metabolismo , Esporos Fúngicos , Imunidade Esterilizante , Virulência , Aspergilose Pulmonar Invasiva/microbiologia , Aspergilose Pulmonar Invasiva/patologia , Mamíferos
7.
Infect Immun ; 91(11): e0021723, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37861312

RESUMO

Myeloid phagocytes of the respiratory immune system, such as neutrophils, monocytes, and alveolar macrophages, are essential for immunity to Aspergillus fumigatus, the most common etiologic agent of mold pneumonia worldwide. Following the engulfment of A. fumigatus conidia, fusion of the phagosome with the lysosome is a critical process for killing conidia. TFEB and TFE3 are transcription factors that regulate lysosomal biogenesis under stress and are activated by inflammatory stimuli in macrophages, but it is unknown whether TFEB and TFE3 contribute to anti-Aspergillus immunity during infection. We found that lung neutrophils express TFEB and TFE3, and their target genes were upregulated during A. fumigatus lung infection. In addition, A. fumigatus infection induced nuclear accumulation of TFEB and TFE3 in macrophages in a process regulated by Dectin-1 and CARD9. Genetic deletion of Tfeb and Tfe3 impaired macrophage killing of A. fumigatus conidia. However, in a murine immune-competent Aspergillus infection model with genetic deficiency of Tfeb and Tfe3 in hematopoietic cells, we surprisingly found that lung myeloid phagocytes had no defects in conidial phagocytosis or killing. Loss of TFEB and TFE3 did not impact murine survival or clearance of A. fumigatus from the lungs. Our findings indicate that myeloid phagocytes activate TFEB and TFE3 in response to A. fumigatus, and while this pathway promotes macrophage fungicidal activity in vitro, genetic loss can be functionally compensated in the lung, resulting in no measurable defect in fungal control and host survival.


Assuntos
Aspergilose , Pneumonia , Animais , Camundongos , Aspergillus fumigatus , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Redes Reguladoras de Genes , Pulmão , Fagócitos
8.
bioRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745515

RESUMO

Professional phagocytes like neutrophils and macrophages tightly control what they eat, how much they eat, and when they move after eating. We show that plasma membrane abundance is a key arbiter of these cellular behaviors. Neutrophils and macrophages lacking the G-protein subunit Gb4 exhibit profound plasma membrane expansion due to enhanced production of sphingolipids. This increased membrane allocation dramatically enhances phagocytosis of bacteria, fungus, apoptotic corpses, and cancer cells. Gb4 deficient neutrophils are also defective in the normal inhibition of migration following cargo uptake. In Gb4 knockout mice, myeloid cells exhibit enhanced phagocytosis of inhaled fungal conidia in the lung but also increased trafficking of engulfed pathogens to other organs. These results reveal an unexpected, biophysical control mechanism lying at the heart of myeloid functional decision-making.

9.
bioRxiv ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37398416

RESUMO

Myeloid phagocytes of the respiratory immune system, such as neutrophils, monocytes, and alveolar macrophages, are essential for immunity to Aspergillus fumigatus, the most common etiologic agent of mold pneumonia worldwide. Following engulfment of A. fumigatus conidia, fusion of the phagosome with the lysosome, is a critical process for killing conidia. TFEB and TFE3 are transcription factors that regulate lysosomal biogenesis under stress and are activated by inflammatory stimuli in macrophages, but it is unknown whether TFEB and TFE3 contribute to anti-Aspergillus immunity during infection. We found that lung neutrophils express TFEB and TFE3, and their target genes were upregulated during A. fumigatus lung infection. Additionally, A. fumigatus infection induced nuclear accumulation of TFEB and TFE3 in macrophages in a process regulated by Dectin-1 and CARD9 signaling. Genetic deletion of Tfeb and Tfe3 impaired macrophage killing of A. fumigatus conidia. However, in a murine immune competent Aspergillus infection model with genetic deficiency of Tfeb and Tfe3 in hematopoietic cells, we surprisingly found that lung myeloid phagocytes had no defects in conidial phagocytosis or killing. Loss of TFEB and TFE3 did not impact murine survival or clearance of A. fumigatus from the lungs. Our findings indicate that myeloid phagocytes activate TFEB and TFE3 in response to A. fumigatus, and while this pathway promotes macrophage fungicidal activity in vitro, genetic loss can be functionally compensated at the portal of infection in the lung, resulting in no measurable defect in fungal control and host survival.

10.
J Clin Invest ; 133(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37432737

RESUMO

Recognition of pathogen-associated molecular patterns can trigger the inositol-requiring enzyme 1 α (IRE1α) arm of the endoplasmic reticulum (ER) stress response in innate immune cells. This process maintains ER homeostasis and also coordinates diverse immunomodulatory programs during bacterial and viral infections. However, the role of innate IRE1α signaling in response to fungal pathogens remains elusive. Here, we report that systemic infection with the human opportunistic fungal pathogen Candida albicans induced proinflammatory IRE1α hyperactivation in myeloid cells that led to fatal kidney immunopathology. Mechanistically, simultaneous activation of the TLR/IL-1R adaptor protein MyD88 and the C-type lectin receptor dectin-1 by C. albicans induced NADPH oxidase-driven generation of ROS, which caused ER stress and IRE1α-dependent overexpression of key inflammatory mediators such as IL-1ß, IL-6, chemokine (C-C motif) ligand 5 (CCL5), prostaglandin E2 (PGE2), and TNF-α. Selective ablation of IRE1α in leukocytes, or treatment with an IRE1α pharmacological inhibitor, mitigated kidney inflammation and prolonged the survival of mice with systemic C. albicans infection. Therefore, controlling IRE1α hyperactivation may be useful for impeding the immunopathogenic progression of disseminated candidiasis.


Assuntos
Candidíase , Proteínas Serina-Treonina Quinases , Humanos , Animais , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Endorribonucleases/metabolismo , Estresse do Retículo Endoplasmático , Candida albicans , Receptores Toll-Like/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
11.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333187

RESUMO

Invasive pulmonary aspergillosis (IPA) is a life-threatening infection caused by species in the ubiquitous fungal genus Aspergillus . While leukocyte-generated reactive oxygen species (ROS) are critical for the clearance of fungal conidia from the lung and resistance to IPA, the processes that govern ROS-dependent fungal cell death remain poorly defined. Using a flow cytometric approach that monitors two independent cell death markers, an endogenous histone H2A:mRFP nuclear integrity reporter and Sytox Blue cell impermeable (live/dead) stain, we observed that loss of A. fumigatus cytochrome c ( cycA ) results in reduced susceptibility to cell death from hydrogen peroxide (H 2 O 2 ) treatment. Consistent with these observations in vitro , loss of cycA confers resistance to both NADPH-oxidase -dependent and -independent killing by host leukocytes. Fungal ROS resistance is partly mediated in part by Bir1, a homolog to survivin in humans, as Bir1 overexpression results in decreased ROS-induced conidial cell death and reduced killing by innate immune cells in vivo . We further report that overexpression of the Bir1 N-terminal BIR domain in A. fumigatus conidia results in altered expression of metabolic genes that functionally converge on mitochondrial function and cytochrome c ( cycA ) activity. Together, these studies demonstrate that cycA in A. fumigatus contributes to cell death responses that are induced by exogenous H 2 O 2 and by host leukocytes. Importance: Aspergillus fumigatus can cause a life-threatening infection known as invasive pulmonary aspergillosis (IPA), which is marked by fungus-attributable mortality rates of 20%-30%. Individuals at risk of IPA harbor genetic mutations or incur pharmacologic defects that impair myeloid cell numbers and/or function, exemplified by bone marrow transplant recipients, patients that receive corticosteroid therapy, or patients with Chronic Granulomatous Disease (CGD). However, treatments for Aspergillus infections remains limited, and resistance to the few existing drug classes is emerging. Recently, the World Health Organization (WHO) classified A. fumigatus as a critical priority fungal pathogen. Our research identifies an important aspect of fungal biology that impacts susceptibility to leukocyte killing. Furthering our understanding of mechanisms that mediate the outcome of fungal-leukocyte interactions will increase our understanding of both the underlying fungal biology governing cell death and innate immune evasion strategies utilized during mammalian infection pathogenesis. Consequently, our studies are a critical step toward leveraging these mechanisms for novel therapeutic advances.

12.
Lancet Microbe ; 4(6): e470-e480, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37121240

RESUMO

Candida parapsilosis is one of the most commen causes of life-threatening candidaemia, particularly in premature neonates, individuals with cancer of the haematopoietic system, and recipients of organ transplants. Historically, drug-susceptible strains have been linked to clonal outbreaks. However, worldwide studies started since 2018 have reported severe outbreaks among adults caused by fluconazole-resistant strains. Outbreaks caused by fluconazole-resistant strains are associated with high mortality rates and can persist despite strict infection control strategies. The emergence of resistance threatens the efficacy of azoles, which is the most widely used class of antifungals and the only available oral treatment option for candidaemia. The fact that most patients infected with fluconazole-resistant strains are azole-naive underscores the high potential adaptability of fluconazole-resistant strains to diverse hosts, environmental niches, and reservoirs. Another concern is the multidrug-resistant and echinocandin-tolerant C parapsilosis isolates, which emerged in 2020. Raising awareness, establishing effective clinical interventions, and understanding the biology and pathogenesis of fluconazole-resistant C parapsilosis are urgently needed to improve treatment strategies and outcomes.


Assuntos
Candidemia , Fluconazol , Adulto , Recém-Nascido , Humanos , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Candida parapsilosis , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candidemia/tratamento farmacológico , Candidemia/epidemiologia , Azóis/farmacologia , Azóis/uso terapêutico
13.
Ann Am Thorac Soc ; 20(3): 341-353, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36856712

RESUMO

Pneumonia imposes a significant clinical burden on people with immunocompromising conditions. Millions of individuals live with compromised immunity because of cytotoxic cancer treatments, biological therapies, organ transplants, inherited and acquired immunodeficiencies, and other immune disorders. Despite broad awareness among clinicians that these patients are at increased risk for developing infectious pneumonia, immunocompromised people are often excluded from pneumonia clinical guidelines and treatment trials. The absence of a widely accepted definition for immunocompromised host pneumonia is a significant knowledge gap that hampers consistent clinical care and research for infectious pneumonia in these vulnerable populations. To address this gap, the American Thoracic Society convened a workshop whose participants had expertise in pulmonary disease, infectious diseases, immunology, genetics, and laboratory medicine, with the goal of defining the entity of immunocompromised host pneumonia and its diagnostic criteria.


Assuntos
Síndrome da Imunodeficiência Adquirida , Transplante de Órgãos , Pneumonia , Humanos , Hospedeiro Imunocomprometido , Sociedades
14.
Semin Immunol ; 66: 101728, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36841146

RESUMO

The respiratory tree maintains sterilizing immunity against human fungal pathogens. Humans inhale ubiquitous filamentous molds and geographically restricted dimorphic fungal pathogens that form small airborne conidia. In addition, pathogenic yeasts, exemplified by encapsulated Cryptococcus species, and Pneumocystis pose significant fungal threats to the lung. Classically, fungal pneumonia occurs in immune compromised individuals, specifically in patients with HIV/AIDS, in patients with hematologic malignancies, in organ transplant recipients, and in patients treated with corticosteroids and targeted biologics that impair fungal immune surveillance in the lung. The emergence of fungal co-infections during severe influenza and COVID-19 underscores the impairment of fungus-specific host defense pathways in the lung by respiratory viruses and by medical therapies to treat viral infections. Beyond life-threatening invasive syndromes, fungal antigen exposure can exacerbate allergenic disease in the lung. In this review, we discuss emerging principles of lung-specific antifungal immunity, integrate the contributions and cooperation of lung epithelial, innate immune, and adaptive immune cells to mucosal barrier immunity, and highlight the pathogenesis of fungal-associated allergenic disease. Improved understanding of fungus-specific immunity in the respiratory tree has paved the way to develop improved diagnostic, pre-emptive, therapeutic, and vaccine approaches for fungal diseases of the lung.


Assuntos
COVID-19 , Micoses , Humanos , Pulmão , Fungos , Imunidade Inata
15.
Nat Rev Immunol ; 23(7): 433-452, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36600071

RESUMO

Pathogenic fungi have emerged as significant causes of infectious morbidity and death in patients with acquired immunodeficiency conditions such as HIV/AIDS and following receipt of chemotherapy, immunosuppressive agents or targeted biologics for neoplastic or autoimmune diseases, or transplants for end organ failure. Furthermore, in recent years, the spread of multidrug-resistant Candida auris has caused life-threatening outbreaks in health-care facilities worldwide and raised serious concerns for global public health. Rapid progress in the discovery and functional characterization of inborn errors of immunity that predispose to fungal disease and the development of clinically relevant animal models have enhanced our understanding of fungal recognition and effector pathways and adaptive immune responses. In this Review, we synthesize our current understanding of the cellular and molecular determinants of mammalian antifungal immunity, focusing on observations that show promise for informing risk stratification, prognosis, prophylaxis and therapies to combat life-threatening fungal infections in vulnerable patient populations.


Assuntos
Micoses , Animais , Humanos , Micoses/tratamento farmacológico , Micoses/microbiologia , Fungos , Antifúngicos/uso terapêutico , Imunidade , Mamíferos
16.
Transplant Cell Ther ; 29(1): 63.e1-63.e5, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36280104

RESUMO

Disruption of the intestinal bacterial microbiota is frequently observed in the context of allogeneic hematopoietic cell transplantation (HCT) and is particularly pronounced in patients who develop graft-versus-host disease (GVHD). Donor fecal microbiota transplantation (FMT) restores gut microbial diversity and reduces GVHD in HCT recipients. The composition of the intestinal fungal community in patients with GVHD, and whether fungal taxa are transferred during FMT are currently unknown. We performed a secondary analysis of our clinical trial of FMT in patients with steroid-refractory GVHD with a focus on the mycobiota. We characterized the fecal mycobiota of 17 patients and healthy FMT donors using internal transcribed spacer amplicon sequencing. The donor who provided the majority of FMT material in our study represents an n-of-one study of the intestinal flora over time. In this donor, mycobiota composition fluctuated over time while the bacterial microbiota remained stable over 16 months. Fungal DNA was detected more frequently in baseline stool samples from patients with steroid-refractory GVHD than in patients with steroid-dependent GVHD. We could detect fungal taxa in the majority of samples but did not see evidence of mycobiota transfer from donor to recipient. Our study demonstrates the feasibility of profiling the mycobiota alongside the more traditional bacterial microbiota, establishes the methodology, and provides a first insight into the mycobiota composition of patients with GVHD.


Assuntos
Doença Enxerto-Hospedeiro , Microbiota , Micobioma , Humanos , Transplante de Microbiota Fecal/métodos , Doença Enxerto-Hospedeiro/terapia , Fezes/microbiologia , Bactérias/genética
17.
Clin Cancer Res ; 29(1): 165-173, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36322005

RESUMO

PURPOSE: The gut microbiota is subject to multiple insults in allogeneic hematopoietic cell transplantation (allo-HCT) recipients. We hypothesized that preparative conditioning regimens contribute to microbiota perturbation in allo-HCT. EXPERIMENTAL DESIGN: This was a retrospective study that evaluated the relationship between conditioning regimens exposure in 1,188 allo-HCT recipients and the gut microbiome. Stool samples collected from 20 days before transplantation up to 30 days after were profiled using 16S rRNA sequencing. Microbiota injury was quantified by changes in α-diversity. RESULTS: We identified distinct patterns of microbiota injury that varied by conditioning regimen. Diversity loss was graded into three levels of conditioning-associated microbiota injury (CMBI) in a multivariable model that included antibiotic exposures. High-intensity regimens, such as total body irradiation (TBI)-thiotepa-cyclophosphamide, were associated with the greatest injury (CMBI III). In contrast, the nonmyeloablative regimen fludarabine-cyclophosphamide with low-dose TBI (Flu/Cy/TBI200) had a low-grade injury (CMBI I). The risk of acute GVHD correlated with CMBI degree. Pretransplant microbial compositions were best preserved with Flu/Cy/TBI200, whereas other regimens were associated with loss of commensal bacteria and expansion of Enterococcus. CONCLUSIONS: Our findings support an interaction between conditioning at the regimen level and the extent of microbiota injury.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Microbiota , Humanos , Estudos Retrospectivos , RNA Ribossômico 16S , Transplante Homólogo/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Ciclofosfamida/efeitos adversos , Doença Enxerto-Hospedeiro/diagnóstico , Doença Enxerto-Hospedeiro/etiologia , Condicionamento Pré-Transplante/efeitos adversos
18.
J Immunol ; 209(10): 1827-1831, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36216513

RESUMO

Neutrophils are critical for the direct eradication of Aspergillus fumigatus conidia, but whether they mediate antifungal defense beyond their role as effectors is unclear. In this study, we demonstrate that neutrophil depletion impairs the activation of protective antifungal CCR2+ inflammatory monocytes. In the absence of neutrophils, monocytes displayed limited differentiation into monocyte-derived dendritic cells, reduced formation of reactive oxygen species, and diminished conidiacidal activity. Upstream regulator analysis of the transcriptional response in monocytes predicted a loss of STAT1-dependent signals as the potential basis for the dysfunction seen in neutrophil-depleted mice. We find that conditional removal of STAT1 on CCR2+ cells results in diminished antifungal monocyte responses, whereas exogenous administration of IFN-γ to neutrophil-depleted mice restores monocyte-derived dendritic cell maturation and reactive oxygen species production. Altogether, our findings support a critical role for neutrophils in antifungal immunity not only as effectors but also as important contributors to antifungal monocyte activation, in part by regulating STAT1-dependent functions.


Assuntos
Monócitos , Neutrófilos , Camundongos , Animais , Antifúngicos , Espécies Reativas de Oxigênio , Aspergillus fumigatus
19.
G3 (Bethesda) ; 12(11)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36179219

RESUMO

The fungal kingdom represents an extraordinary diversity of organisms with profound impacts across animal, plant, and ecosystem health. Fungi simultaneously support life, by forming beneficial symbioses with plants and producing life-saving medicines, and bring death, by causing devastating diseases in humans, plants, and animals. With climate change, increased antimicrobial resistance, global trade, environmental degradation, and novel viruses altering the impact of fungi on health and disease, developing new approaches is now more crucial than ever to combat the threats posed by fungi and to harness their extraordinary potential for applications in human health, food supply, and environmental remediation. To address this aim, the Canadian Institute for Advanced Research (CIFAR) and the Burroughs Wellcome Fund convened a workshop to unite leading experts on fungal biology from academia and industry to strategize innovative solutions to global challenges and fungal threats. This report provides recommendations to accelerate fungal research and highlights the major research advances and ideas discussed at the meeting pertaining to 5 major topics: (1) Connections between fungi and climate change and ways to avert climate catastrophe; (2) Fungal threats to humans and ways to mitigate them; (3) Fungal threats to agriculture and food security and approaches to ensure a robust global food supply; (4) Fungal threats to animals and approaches to avoid species collapse and extinction; and (5) Opportunities presented by the fungal kingdom, including novel medicines and enzymes.


Assuntos
Micoses , Animais , Humanos , Micoses/microbiologia , Fungos , Ecossistema , Canadá , Plantas
20.
mBio ; 13(5): e0177722, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36121151

RESUMO

We analyzed the genomes of 170 C. parapsilosis isolates and identified multiple copy number variations (CNVs). We identified two genes, RTA3 (CPAR2_104610) and ARR3 (CPAR2_601050), each of which was the target of multiple independent amplification events. Phylogenetic analysis shows that most of these amplifications originated only once. For ARR3, which encodes a putative arsenate transporter, 8 distinct CNVs were identified, ranging in size from 2.3 kb to 10.5 kb with 3 to 23 copies. For RTA3, 16 distinct CNVs were identified, ranging in size from 0.3 kb to 4.5 kb with 2 to ~50 copies. One unusual amplification resulted in a DUP-TRP/INV-DUP structure similar to some human CNVs. RTA3 encodes a putative phosphatidylcholine (PC) floppase which is known to regulate the inward translocation of PC in Candida albicans. We found that an increased copy number of RTA3 correlated with resistance to miltefosine, an alkylphosphocholine drug that affects PC metabolism. Additionally, we conducted an adaptive laboratory evolution experiment in which two C. parapsilosis isolates were cultured in increasing concentrations of miltefosine. Two genes, CPAR2_303950 and CPAR2_102700, coding for putative PC flippases homologous to S. cerevisiae DNF1 gained homozygous protein-disrupting mutations in the evolved strains. Overall, our results show that C. parapsilosis can gain resistance to miltefosine, a drug that has recently been granted orphan drug designation approval by the United States Food and Drug Administration for the treatment of invasive candidiasis, through both CNVs or loss-of-function alleles in one of the flippase genes. IMPORTANCE Copy number variations (CNVs) are an important source of genomic diversity that have been associated with drug resistance. We identify two unusual CNVs in the human fungal pathogen Candida parapsilosis. Both target a single gene (RTA3 or ARR3), and they have occurred multiple times in multiple isolates. The copy number of RTA3, a putative floppase that controls the inward translocation of lipids in the cell membrane, correlates with resistance to miltefosine, a derivative of phosphatidylcholine (PC) that was originally developed as an anticancer drug. In 2021, miltefosine was designated an orphan drug by the United States Food and Drug Administration for the treatment of invasive candidiasis. Importantly, we find that resistance to miltefosine is also caused by mutations in flippases, which control the outward movement of lipids, and that many C. parapsilosis isolates are prone to easily acquiring an increased resistance to miltefosine.


Assuntos
Candida parapsilosis , Farmacorresistência Fúngica , Antifúngicos/farmacologia , Arseniatos , Candida parapsilosis/efeitos dos fármacos , Candida parapsilosis/genética , Variações do Número de Cópias de DNA , Farmacorresistência Fúngica/genética , Amplificação de Genes , Fosfatidilcolinas , Filogenia , Saccharomyces cerevisiae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA