Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Toxins (Basel) ; 11(1)2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30621150

RESUMO

The purpose of the present study was to investigate the effects of phytic acid (IP6) on morphological and immunohistochemical parameters and oxidative stress response in intestinal explants of pigs exposed to fumonisin B1 (FB1) and/or deoxynivalenol (DON). The jejunal explants were exposed to the following treatments: vehicle, IP6 5 mM, DON 10 µM, FB1 70 µM, DON 10 µM + FB1 70 µM, DON 10 µM + IP6 5 mM, FB1 70 µM + IP6 5 mM, and DON 10 µM + FB1 70 µM + IP6 5 mM. The decrease in villus height and goblet cell density was more evident in DON and DON + FB1 treatments. In addition, a significant increase in cell apoptosis and cell proliferation and a decrease in E-cadherin expression were observed in the same groups. DON and FB1 exposure increased cyclooxygenase-2 expression and decreased the cellular antioxidant capacity. An increase in lipid peroxidation was observed in DON- and FB1-treated groups. IP6 showed beneficial effects, such as a reduction in intestinal morphological changes, cell apoptosis, cell proliferation, and cyclooxygenase-2 expression, and an increase in E-cadherin expression when compared with DON, FB1 alone, or DON and FB1 in association. IP6 inhibited oxidative stress and increased the antioxidant capacity in the explants exposed to mycotoxins.


Assuntos
Fumonisinas/toxicidade , Intestinos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ácido Fítico/farmacologia , Tricotecenos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Células Caliciformes/efeitos dos fármacos , Intestinos/patologia , Suínos
3.
Curr Med Chem ; 26(31): 5781-5810, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29788868

RESUMO

BACKGROUND: Neuroinflammatory diseases that affect spinal cord or associated spinal nerves represent challenging conditions for management in current medicine because of their complex pathology, poor prognosis, and high morbidity, which strikingly reduces the quality of life of patients. In this sense, a better understanding of the cellular and molecular mechanisms of spinal cord neuroinflammation might contribute to the development of novel therapies. Oligodendrocytes have unique and vital biological properties in central nervous system (CNS) homeostasis and physiology. A growing body of experimental evidence demonstrates that these glial cells are involved in the pathophysiological mechanisms underlying many chronic, neurodegenerative, and incapacitating CNS disorders. These cells also have important implications for the development and maintenance of neural plasticity and chronic pain states. On the other hand, evidence indicates that oligodendrocytes and their products may act in favor of CNS promoting beneficial effects orchestrating CNS tissue repair after injury. OBJECTIVE: The present review aims to explore the multi-faceted actions of spinal cord oligodendrocyte progenitors cells (OPCs) and mature oligodendrocytes in CNS inflammation and pathology, addressing their roles in experimental and clinical settings. A major focus was given to spinal cord amyotrophic lateral sclerosis, multiple sclerosis (MS)/experimental autoimmune encephalomyelitis (EAE), traumatic injury and pain processing. METHODS: This review analyses and discusses published original research articles regarding the role of OPCs/oligodendrocytes in spinal cord inflammation and pain processing. RESULTS AND CONCLUSION: Findings from a number of clinical and experimental paradigms suggest spinal cord OPCs/oligodendrocytes are a potential therapeutic target for the control of neuroinflammation.


Assuntos
Sistema Nervoso Central/metabolismo , Inflamação/metabolismo , Doenças Neurodegenerativas/metabolismo , Oligodendroglia/metabolismo , Dor/metabolismo , Medula Espinal/metabolismo , Animais , Sistema Nervoso Central/patologia , Homeostase , Humanos , Inflamação/patologia , Doenças Neurodegenerativas/patologia , Oligodendroglia/patologia , Dor/patologia , Medula Espinal/patologia
4.
Front Pharmacol ; 9: 1536, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687097

RESUMO

Despite the progress that has occurred in recent years in the development of therapies to treat painful and inflammatory diseases, there is still a need for effective and potent analgesics and anti-inflammatory drugs. It has long been known that several types of antioxidants also possess analgesic and anti-inflammatory properties, indicating a strong relationship between inflammation and oxidative stress. Understanding the underlying mechanisms of action of anti-inflammatory and analgesic drugs, as well as essential targets in disease physiopathology, is essential to the development of novel therapeutic strategies. The Nuclear factor-2 erythroid related factor-2 (Nrf2) is a transcription factor that regulates cellular redox status through endogenous antioxidant systems with simultaneous anti-inflammatory activity. This review summarizes the molecular mechanisms and pharmacological actions screened that link analgesic, anti-inflammatory, natural products, and other therapies to Nrf2 as a regulatory system based on emerging evidences from experimental disease models and new clinical trial data.

5.
Invest Ophthalmol Vis Sci ; 58(13): 5764-5776, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29117277

RESUMO

Purpose: To investigate the effect of naringenin eye drops in corneal neovascularization induced by alkali (1 N NaOH) burn in mice. Methods: Corneal neovascularization in the right eye of male Swiss mice was induced by alkali. Treatment with naringenin eye drops (0.08-80 µg; 8 µL of 0.01-10 g/L solution) or vehicle (saline) started 2 days before corneal neovascularization was induced and was performed twice a day. Mice were treated up until the time animals were euthanized and cornea tissue was collected for testing, which was 2, 4, and 6 hours after alkali stimulus for cytokine and antioxidant capacity measurements, and 3 and/or 7 days after alkali stimulus for the assessment of corneal epithelial thickness and neovascularization, neutrophil, and macrophage recruitment, and vascular endothelial growth factor (Vegf), platelet-derived growth factor (Pdgf), matrix metalloproteinase-14 (Mmp14), and pigment epithelium-derived factor (Pedf) mRNA expression. Results: Naringenin eye drops inhibited alkali burn-induced neutrophil (myeloperoxidase activity and recruitment of Lysm-GFP+ cells) and macrophage (N-acetyl-ß-D glucosaminidase activity) recruitment into the eye, decrease in epithelial thickness, and neovascularization in the cornea. Further, naringenin inhibited alkali-induced cytokine (IL-1ß and IL-6) production, Vegf, Pdgf, and Mmp14 mRNA expression, and the reduction of ferric reducing antioxidant power and Azinobis-(3-Ethylbenzothiazoline 6-Sulfonic acid) radical scavenging capacity as well as increased the reduced glutathione and protein-bound sulfhydryl groups levels. Conclusions: Collectively, these results indicate that naringenin eye drops are protective in alkali-induced corneal burn by inhibiting leukocyte recruitment, the proangiogenic factor expression, inflammatory cytokine production, and loss of antioxidant defenses.


Assuntos
Antioxidantes/metabolismo , Neovascularização da Córnea/tratamento farmacológico , Citocinas/metabolismo , Epitélio Corneano/metabolismo , Flavanonas/administração & dosagem , Álcalis/toxicidade , Animais , Queimaduras Químicas/complicações , Neovascularização da Córnea/metabolismo , Neovascularização da Córnea/patologia , Modelos Animais de Doenças , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/patologia , Antagonistas de Estrogênios/administração & dosagem , Queimaduras Oculares/induzido quimicamente , Masculino , Camundongos , Microscopia Confocal , Soluções Oftálmicas
6.
Expert Opin Ther Targets ; 21(12): 1141-1152, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29076792

RESUMO

INTRODUCTION: IL-33 signals through ST2 receptor and promotes inflammation by activating downstream pathways culminating in the production of pro-inflammatory mediators such as IL-1ß, TNF-α, and IL-6 in an NF-κB-dependent manner. In fact, compelling evidence has demonstrated the importance of IL-33/ST2 in both innate and adaptive immune responses in diseases presenting pain as an important clinical symptom. Areas covered: IL-33 is a pleiotropic cytokine with varied immune functions. Dysregulation of this pathway has been described as a key step in varied immune responses. Further, IL-33 contributes to peripheral and spinal cord nociceptor neuron sensitization in innate and adaptive inflammatory immune responses as well as in neuropathic and cancer pain. In this sense, targeting IL-33/ST2 signaling is a promising therapeutic approach. Expert opinion: The modulation of IL-33/ST2 signaling represents a possible approach in regulating immune functions. In addition to immune function, strategies targeting IL-33/ST2 signaling pathway display a favorable preclinical analgesic profile in both acute and chronic models of pain. Therefore, IL-33-targeting therapies represent a potential target for the development of novel analgesic drugs given that IL-33 activates, for instance, neutrophils, mast cells, macrophages, astrocytes, and microglia that are important cells in the induction and maintenance of chronic pain states.


Assuntos
Dor Aguda/tratamento farmacológico , Dor Crônica/tratamento farmacológico , Interleucina-33/metabolismo , Dor Aguda/imunologia , Analgésicos/farmacologia , Animais , Dor Crônica/imunologia , Citocinas/imunologia , Desenho de Fármacos , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/imunologia , Terapia de Alvo Molecular , Transdução de Sinais/efeitos dos fármacos
7.
Molecules ; 21(7)2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27367653

RESUMO

In this review, we discuss the importance of capsaicin to the current understanding of neuronal modulation of pain and explore the mechanisms of capsaicin-induced pain. We will focus on the analgesic effects of capsaicin and its clinical applicability in treating pain. Furthermore, we will draw attention to the rationale for other clinical therapeutic uses and implications of capsaicin in diseases such as obesity, diabetes, cardiovascular conditions, cancer, airway diseases, itch, gastric, and urological disorders.


Assuntos
Capsaicina/farmacologia , Capsaicina/uso terapêutico , Dor/tratamento farmacológico , Analgésicos/química , Analgésicos/isolamento & purificação , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Capsaicina/química , Capsaicina/isolamento & purificação , Capsicum/química , Estudos Clínicos como Assunto , Composição de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Humanos , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Dor/etiologia , Dor/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
8.
PLoS One ; 11(2): e0149656, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26895409

RESUMO

Pimaradienoic acid (PA; ent-pimara-8(14),15-dien-19-oic acid) is a pimarane diterpene found in plants such as Vigueira arenaria Baker (Asteraceae) in the Brazilian savannas. Although there is evidence on the analgesic and in vitro inhibition of inflammatory signaling pathways, and paw edema by PA, its anti-inflammatory effect deserves further investigation. Thus, the objective of present study was to investigate the anti-inflammatory effect of PA in carrageenan-induced peritoneal and paw inflammation in mice. Firstly, we assessed the effect of PA in carrageenan-induced leukocyte recruitment in the peritoneal cavity and paw edema and myeloperoxidase activity. Next, we investigated the mechanisms involved in the anti-inflammatory effect of PA. The effect of PA on carrageenan-induced oxidative stress in the paw skin and peritoneal cavity was assessed. We also tested the effect of PA on nitric oxide, superoxide anion, and inflammatory cytokine production in the peritoneal cavity. PA inhibited carrageenan-induced recruitment of total leukocytes and neutrophils to the peritoneal cavity in a dose-dependent manner. PA also inhibited carrageenan-induced paw edema and myeloperoxidase activity in the paw skin. The anti-inflammatory mechanism of PA depended on maintaining paw skin antioxidant activity as observed by the levels of reduced glutathione, ability to scavenge the ABTS cation and reduce iron as well as by the inhibition of superoxide anion and nitric oxide production in the peritoneal cavity. Furthermore, PA inhibited carrageenan-induced peritoneal production of inflammatory cytokines TNF-α and IL-1ß. PA presents prominent anti-inflammatory effect in carrageenan-induced inflammation by reducing oxidative stress, nitric oxide, and cytokine production. Therefore, it seems to be a promising anti-inflammatory molecule that merits further investigation.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Asteraceae/química , Quimiotaxia de Leucócito/efeitos dos fármacos , Citocinas/biossíntese , Diterpenos/farmacologia , Óxido Nítrico/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Animais , Brasil , Carragenina/antagonistas & inibidores , Diterpenos/química , Edema , Interleucina-1beta/biossíntese , Masculino , Camundongos , Infiltração de Neutrófilos/efeitos dos fármacos , Cavidade Peritoneal , Peroxidase/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
9.
Anal Cell Pathol (Amst) ; 2015: 285708, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26351625

RESUMO

Cancer pain directly affects the patient's quality of life. We have previously demonstrated that the subcutaneous administration of the mammary adenocarcinoma known as Ehrlich tumor induces pain in mice. Several studies have shown that the flavonoid quercetin presents important biological effects, including anti-inflammatory, antioxidant, analgesic, and antitumor activity. Therefore, the analgesic effect and mechanisms of quercetin were evaluated in Ehrlich tumor-induced cancer pain in mice. Intraperitoneal (i.p.) treatments with quercetin reduced Ehrlich tumor-induced mechanical and thermal hyperalgesia, but not paw thickness or histological alterations, indicating an analgesic effect without affecting tumor growth. Regarding the analgesic mechanisms of quercetin, it inhibited the production of hyperalgesic cytokines IL-1ß and TNFα and decreased neutrophil recruitment (myeloperoxidase activity) and oxidative stress. Naloxone (opioid receptor antagonist) inhibited quercetin analgesia without interfering with neutrophil recruitment, cytokine production, and oxidative stress. Importantly, cotreatment with morphine and quercetin at doses that were ineffective as single treatment reduced the nociceptive responses. Concluding, quercetin reduces the Ehrlich tumor-induced cancer pain by reducing the production of hyperalgesic cytokines, neutrophil recruitment, and oxidative stress as well as by activating an opioid-dependent analgesic pathway and potentiation of morphine analgesia. Thus, quercetin treatment seems a suitable therapeutic approach for cancer pain that merits further investigation.


Assuntos
Carcinoma de Ehrlich/complicações , Dor/tratamento farmacológico , Dor/etiologia , Quercetina/uso terapêutico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos Opioides/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Feminino , Interleucina-1beta/biossíntese , Masculino , Camundongos , Morfina/farmacologia , Morfina/uso terapêutico , Naloxona/farmacologia , Naloxona/uso terapêutico , Infiltração de Neutrófilos/efeitos dos fármacos , Estresse Oxidativo , Dor/patologia , Quercetina/farmacologia , Pele/patologia , Medula Espinal/patologia , Fator de Necrose Tumoral alfa/biossíntese
10.
J Nat Prod ; 78(8): 1799-808, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26192250

RESUMO

Vanillic acid (1) is a flavoring agent found in edible plants and fruits. It is an oxidized form of vanillin. Phenolic compounds form a substantial part of plant foods used as antioxidants with beneficial biological activities. These compounds have received considerable attention because of their role in preventing human diseases. Especially, 1 presents antibacterial, antimicrobial, and chemopreventive effects. However, the mechanisms by which 1 exerts its anti-inflammatory effects in vivo are incompletely understood. Thus, the effect of 1 was evaluated in murine models of inflammatory pain. Treatment with 1 inhibited the overt pain-like behavior induced by acetic acid, phenyl-p-benzoquinone, the second phase of the formalin test, and complete Freund's adjuvant (CFA). Treatment with 1 also inhibited carrageenan- and CFA-induced mechanical hyperalgesia, paw edema, myeloperoxidase activity, and N-acetyl-ß-D-glucosaminidase activity. The anti-inflammatory mechanisms of 1 involved the inhibition of oxidative stress, pro-inflammatory cytokine production, and NFκB activation in the carrageenan model. The present study demonstrated 1 presents analgesic and anti-inflammatory effects in a wide range of murine inflammation models, and its mechanisms of action involves antioxidant effects and NFκB-related inhibition of pro-inflammatory cytokine production.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , NF-kappa B/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ácido Vanílico/farmacologia , Animais , Anti-Inflamatórios/química , Antioxidantes/farmacologia , Benzaldeídos/química , Benzoquinonas/farmacologia , Carragenina/efeitos adversos , Citocinas/biossíntese , Modelos Animais de Doenças , Edema/induzido quimicamente , Adjuvante de Freund/farmacologia , Hiperalgesia/tratamento farmacológico , Inflamação/induzido quimicamente , Masculino , Camundongos , Estrutura Molecular , Dor/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Ácido Vanílico/química
11.
Phytother Res ; 29(7): 1097-101, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25851311

RESUMO

Hypericum perforatum is a medicinal plant with anti-inflammatory and antioxidant properties, which is commercially available for therapeutic use in Brazil. Herein the effect of H. perforatum extract on paracetamol (acetaminophen)-induced hepatotoxicity, lethality, inflammation, and oxidative stress in male swiss mice were investigated. HPLC analysis demonstrated the presence of rutin, quercetin, hypericin, pseudohypericin, and hyperforin in H. perforatum extract. Paracetamol (0.15-3.0 g/kg, p.o.) induced dose-dependent mortality. The sub-maximal lethal dose of paracetamol (1.5 g/kg, p.o.) was chosen for the experiments in the study. H. perforatum (30-300 mg/kg, i.p.) dose-dependently reduced paracetamol-induced lethality. Paracetamol-induced increase in plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) concentrations, and hepatic myeloperoxidase activity, IL-1ß, TNF-α, and IFN-γ concentrations as well as decreased reduced glutathione (GSH) concentrations and capacity to reduce 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate radical cation; ABTS˙(+) ) were inhibited by H. perforatum (300 mg/kg, i.p.) treatment. Therefore, H. perforatum protects mice against paracetamol-induced lethality and liver damage. This effect seems to be related to the reduction of paracetamol-induced cytokine production, neutrophil recruitment, and oxidative stress.


Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Hypericum/química , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Alanina Transaminase/sangue , Animais , Antracenos , Anti-Inflamatórios/farmacologia , Antioxidantes/uso terapêutico , Aspartato Aminotransferases/sangue , Glutationa/metabolismo , Masculino , Camundongos , Perileno/análogos & derivados , Perileno/análise , Floroglucinol/análogos & derivados , Floroglucinol/análise , Plantas Medicinais/química , Quercetina/análise , Rutina/análise , Terpenos/análise , Fator de Necrose Tumoral alfa/metabolismo
12.
Chem Biol Interact ; 228: 88-99, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25617481

RESUMO

Cytokines and reactive oxygen species are inflammatory mediators that lead to increased sensitivity to painful stimuli, and their inhibition represents a therapeutic approach in controlling acute and chronic pain. The water-soluble flavonone hesperidin methyl chalcone (HMC) is used in the treatment of venous diseases, but its bioactivity as anti-inflammatory and analgesic is poorly understood. The present study evaluated the protective effects of HMC in widely used mouse models of acute and prolonged inflammation and pain. Male Swiss mice were treated with HMC (3-100 or 30 mg/kg, intraperitoneally) or vehicle (saline) 1h before inflammatory stimuli. In overt pain-like behavior tests, HMC inhibited acetic acid- and phenyl-p-benzoquinone-induced writhing, and capsaicin-, Complete Freund's Adjuvant (CFA)- and formalin-induced paw flinching and licking. HMC also inhibited carrageenan-, capsaicin- and CFA-induced mechanical and thermal hyperalgesia. Mechanistically, HMC inhibited carrageenan-induced cytokine (TNF-α, IL-1ß, IL-6, and IL-10) production, oxidative stress and NF-κB activation. Furthermore, HMC did not cause gastric or hepatic injury in a 7 days treatment protocol. Thus, this is the first report that HMC reduces inflammation and inflammatory pain by targeting TRPV1 (transient receptor potential vanilloid type 1) receptor activity, oxidative stress, cytokine production, and NF-κB activity, which suggests its potential applicability in inflammatory diseases.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Chalconas/farmacologia , Citocinas/metabolismo , Hesperidina/análogos & derivados , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Analgésicos/química , Animais , Anti-Inflamatórios não Esteroides/química , Chalconas/química , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hesperidina/química , Hesperidina/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Estrutura Molecular , NF-kappa B/antagonistas & inibidores , Dor/tratamento farmacológico , Dor/metabolismo , Relação Estrutura-Atividade , Canais de Cátion TRPV/antagonistas & inibidores
13.
J Nat Prod ; 77(11): 2488-96, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25394199

RESUMO

Pimaradienoic acid (1) is a pimarane diterpene (ent-pimara-8(14),15-dien-19-oic acid) extracted at high amounts from various plants including Vigueira arenaria Baker. Compound 1 inhibited carrageenan-induced paw edema and acetic acid-induced abdominal writhing, which are its only known anti-inflammatory activities. Therefore, it is important to further investigate the analgesic effects of 1. Oral administration of 1 (1, 3, and 10 mg/kg) inhibited the acetic acid-induced writhing. This was also observed at 10 mg/kg via sc and ip routes. Both phases of the formalin- and complete Freund's adjuvant (CFA)-induced paw flinch and time spent licking the paw were inhibited by 1. Compound 1 inhibited carrageenan-, CFA-, and PGE2-induced mechanical hyperalgesia. Treatment with 1 inhibited carrageenan-induced production of TNF-α, IL-1ß, IL-33, and IL-10 and nuclear factor κB activation. Pharmacological inhibitors also demonstrated that the analgesic effects of 1 depend on activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway. Compound 1 did not alter plasma levels of AST, ALT, or myeloperoxidase activity in the stomach. These results demonstrate that 1 causes analgesic effects associated with the inhibition of NF-κB activation, reduction of cytokine production, and activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Diterpenos/farmacologia , Ácido Acético/farmacologia , Analgésicos/farmacologia , Carragenina/farmacologia , GMP Cíclico/metabolismo , Diterpenos/química , Edema/induzido quimicamente , Adjuvante de Freund/farmacologia , Hiperalgesia/tratamento farmacológico , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Canais KATP/efeitos dos fármacos , Estrutura Molecular , Dor/tratamento farmacológico , Canais de Potássio/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
14.
Biomed Res Int ; 2013: 627046, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24288682

RESUMO

5-Lipoxygenase (5-LO) converts arachidonic acid into leukotrienes (LTs) and is involved in inflammation. At present, the participation of 5-LO in acetaminophen (APAP)-induced hepatotoxicity and liver damage has not been addressed. 5-LO deficient (5-LO⁻/⁻) mice and background wild type mice were challenged with APAP (0.3-6 g/kg) or saline. The lethality, liver damage, neutrophil and macrophage recruitment, LTB4, cytokine production, and oxidative stress were assessed. APAP induced a dose-dependent mortality, and the dose of 3 g/kg was selected for next experiments. APAP induced LTB4 production in the liver, the primary target organ in APAP toxicity. Histopathological analysis revealed that 5-LO⁻/⁻ mice presented reduced APAP-induced liver necrosis and inflammation compared with WT mice. APAP-induced lethality, increase of plasma levels of aspartate aminotransferase and alanine aminotransferase, liver cytokine (IL-1ß, TNF-α , IFN- γ, and IL-10), superoxide anion, and thiobarbituric acid reactive substances production, myeloperoxidase and N-acetyl-ß-D-glucosaminidase activity, Nrf2 and gp91(phox) mRNA expression, and decrease of reduced glutathione and antioxidant capacity measured by 2,2'-azinobis(3-ethylbenzothiazoline 6-sulfonate) assay were prevented in 5-LO⁻/⁻ mice compared to WT mice. Therefore, 5-LO deficiency resulted in reduced mortality due to reduced liver inflammatory and oxidative damage, suggesting 5-LO is a promising target to reduce APAP-induced lethality and liver inflammatory/oxidative damage.


Assuntos
Acetaminofen/efeitos adversos , Analgésicos não Narcóticos/efeitos adversos , Araquidonato 5-Lipoxigenase , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Acetaminofen/farmacologia , Alanina Transaminase/sangue , Alanina Transaminase/genética , Analgésicos não Narcóticos/farmacologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocinas/sangue , Citocinas/genética , Inflamação/induzido quimicamente , Inflamação/enzimologia , Inflamação/genética , Inflamação/patologia , Glicoproteínas de Membrana/sangue , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , NADPH Oxidase 2 , NADPH Oxidases/sangue , NADPH Oxidases/genética , Fator 2 Relacionado a NF-E2/sangue , Fator 2 Relacionado a NF-E2/genética , Oxirredução/efeitos dos fármacos , Superóxidos/sangue
15.
J Nat Prod ; 76(6): 1141-9, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23742617

RESUMO

The flavonoid vitexin (1) is a flavone C-glycoside (apigenin-8-C-ß-D-glucopyranoside) present in several medicinal and other plants. Plant extracts containing 1 are reported to possess antinociceptive, anti-inflammatory, and antioxidant activities. However, the only evidence that 1 exhibits antinociceptive activity was demonstrated in the acetic acid-induced writhing model. Therefore, the analgesic effects and mechanisms of 1 were evaluated. In the present investigation, intraperitoneal treatment with 1 dose-dependently inhibited acetic acid-induced writhing. Furthermore, treatment with 1 also inhibited pain-like behavior induced by phenyl-p-benzoquinone, complete Freund's adjuvant (CFA), capsaicin (an agonist of transient receptor potential vanilloid 1, TRPV1), and both phases of the formalin test. It was also observed that inhibition of carrageenan-, capsaicin-, and chronic CFA-induced mechanical and thermal hyperalgesia occurred. Regarding the antinociceptive mechanisms of 1, it prevented the decrease of reduced glutathione levels, ferric-reducing ability potential, and free-radical scavenger ability, inhibited the production of hyperalgesic cytokines such as TNF-α, IL-1ß, IL-6, and IL-33, and up-regulated the levels of the anti-hyperalgesic cytokine IL-10. These results demonstrate that 1 exhibits an analgesic effect in a variety of inflammatory pain models by targeting TRPV1 and oxidative stress and by modulating cytokine production.


Assuntos
Analgésicos/farmacologia , Apigenina/farmacologia , Extratos Vegetais/farmacologia , Canais de Cátion TRPV/efeitos dos fármacos , Animais , Anti-Inflamatórios/efeitos adversos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Apigenina/uso terapêutico , Benzoquinonas , Capsaicina/efeitos adversos , Capsaicina/uso terapêutico , Carragenina/efeitos adversos , Carragenina/uso terapêutico , Citocinas/efeitos adversos , Citocinas/biossíntese , Citocinas/uso terapêutico , Modelos Animais de Doenças , Adjuvante de Freund/farmacologia , Glicosídeos/efeitos adversos , Glicosídeos/uso terapêutico , Hiperalgesia/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Masculino , Camundongos , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Dor/induzido quimicamente , Dor/tratamento farmacológico , Extratos Vegetais/uso terapêutico
16.
Pharmacol Biochem Behav ; 105: 183-92, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23474372

RESUMO

Piracetam is a prototype of nootropic drugs used to improve cognitive impairment. However, recent studies suggest that piracetam can have analgesic and anti-inflammatory effects. Inflammatory pain is the result of a process that depends on neutrophil migration, cytokines and prostanoids release and oxidative stress. We analyze whether piracetam has anti-nociceptive effects and its mechanisms. Per oral pretreatment with piracetam reduced in a dose-dependent manner the overt pain-like behavior induced by acetic acid, phenyl-p-benzoquinone, formalin and complete Freund's adjuvant. Piracetam also diminished carrageenin-induced mechanical and thermal hyperalgesia, myeloperoxidase activity, and TNF-α-induced mechanical hyperalgesia. Piracetam presented analgesic effects as post-treatment and local paw treatment. The analgesic mechanisms of piracetam were related to inhibition of carrageenin- and TNF-α-induced production of IL-1ß as well as prevention of carrageenin-induced decrease of reduced glutathione, ferric reducing ability and free radical scavenging ability in the paw. These results demonstrate that piracetam presents analgesic activity upon a variety of inflammatory stimuli by a mechanism dependent on inhibition of cytokine production and oxidative stress. Considering its safety and clinical use for cognitive function, it is possible that piracetam represents a novel perspective of analgesic.


Assuntos
Analgésicos/farmacologia , Citocinas/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Piracetam/farmacologia , Animais , Masculino , Camundongos , Dor/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA