Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 26(7): 903-9, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26996502

RESUMO

Variation in the size, shape, and positioning of leaves as the major photosynthetic organs strongly impacts crop yield, and optimizing these aspects is a central aim of cereal breeding [1, 2]. Leaf growth in grasses is driven by cell proliferation and cell expansion in a basal growth zone [3]. Although several factors influencing final leaf size and shape have been identified from rice and maize [4-14], what limits grass leaf growth in the longitudinal or transverse directions during leaf development remains poorly understood. To identify factors involved in this process, we characterized the barley mutant broad leaf1 (blf1). Mutants form wider but slightly shorter leaves due to changes in the numbers of longitudinal cell files and of cells along the leaf length. These differences arise during primordia outgrowth because of more cell divisions in the width direction increasing the number of cell files. Positional cloning, analysis of independent alleles, and transgenic complementation confirm that BLF1 encodes a presumed transcriptional regulator of the INDETERMINATE DOMAIN family. In contrast to loss-of-function mutants, moderate overexpression of BLF1 decreases leaf width below wild-type levels. A functional BLF1-vYFP fusion protein expressed from the endogenous promoter shows a dynamic expression pattern in the shoot apical meristem and young leaf primordia. Thus, we propose that the BLF1 gene regulates barley leaf size by restricting cell proliferation in the leaf-width direction. Given the agronomic importance of canopy traits in cereals, identifying functionally different BLF1 alleles promises to allow for the generation of optimized cereal ideotypes.


Assuntos
Hordeum/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Divisão Celular , Proliferação de Células , Expressão Gênica , Mutação , Brotos de Planta/metabolismo
2.
J Exp Bot ; 62(10): 3359-74, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20974738

RESUMO

The transition from vegetative growth to reproductive development is a complex process that requires an integrated response to multiple environmental cues and endogenous signals. In Arabidopsis thaliana, which has a facultative requirement for vernalization and long days, the genes of the autonomous pathway function as floral promoters by repressing the central repressor and vernalization-regulatory gene FLC. Environmental regulation by seasonal changes in daylength is under control of the photoperiod pathway and its key gene CO. The root and leaf crop species Beta vulgaris in the caryophyllid clade of core eudicots, which is only very distantly related to Arabidopsis, is an obligate long-day plant and includes forms with or without vernalization requirement. FLC and CO homologues with related functions in beet have been identified, but the presence of autonomous pathway genes which function in parallel to the vernalization and photoperiod pathways has not yet been reported. Here, this begins to be addressed by the identification and genetic mapping of full-length homologues of the RNA-regulatory gene FLK and the chromatin-regulatory genes FVE, LD, and LDL1. When overexpressed in A. thaliana, BvFLK accelerates bolting in the Col-0 background and fully complements the late-bolting phenotype of an flk mutant through repression of FLC. In contrast, complementation analysis of BvFVE1 and the presence of a putative paralogue in beet suggest evolutionary divergence of FVE homologues. It is further shown that BvFVE1, unlike FVE in Arabidopsis, is under circadian clock control. Together, the data provide first evidence for evolutionary conservation of components of the autonomous pathway in B. vulgaris, while also suggesting divergence or subfunctionalization of one gene. The results are likely to be of broader relevance because B. vulgaris expands the spectrum of evolutionarily diverse species which are subject to differential developmental and/or environmental regulation of floral transition.


Assuntos
Beta vulgaris/metabolismo , Biologia Computacional/métodos , Flores/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Beta vulgaris/genética , Cromossomos Artificiais Bacterianos , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Teste de Complementação Genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
AoB Plants ; 2010: plq012, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22476070

RESUMO

BACKGROUND AND AIMS: Bolting, the first visible sign of reproductive transition in beets (Beta vulgaris), is controlled by the dominant bolting gene B (B allele), which allows for flowering under long days (LDs, >14 h light) without prior vernalization. The B-locus carries recessive alleles (bb) in sugar beet (Beta vulgaris L. spp. vulgaris), so that vernalization and LDs are required for bolting and flowering. Gibberellin growth hormones (GAs) control stem elongation and reproductive development, but their role during these processes in sugar beet is not defined. We aimed to investigate the involvement of GAs in bolting and flowering in sugar beet, and also its relationship with the vernalization requirement as defined by the B-gene. METHODOLOGY: Plants segregating for the B allele were treated with exogenous GA(4) under inductive (16 h light) and non-inductive (8 h light) photoperiods, with and without prior vernalization treatment. A co-dominant polymerase chain reaction (PCR) marker was used to genotype the B-gene locus. Bolting and flowering dates were scored, and bolt heights were measured as appropriate. Analysis of variance was used to determine the effects and interactions of GAs, the B allele and vernalization on bolting and flowering. The effects of the B allele on bolting were also verified in the field. PRINCIPAL RESULTS: Application of GAs or the B allele could initiate bolting independently. When the B allele was absent, the applied GAs promoted stem growth, but did so only in vernalized plants, irrespective of photoperiod. Under LDs, bolt height before flowering in plants carrying the B allele (BB; Bb) was not significantly influenced by GAs. The timing and frequency of flowering were influenced by the B allele without interactive effects from GAs. CONCLUSIONS: In sugar beet, GA acts independently of the B allele and photoperiod to induce bolting. Vernalization enables GA action independently of the B allele; hence, the dominant B allele may not directly participate in vernalization-induced bolting.

4.
Theor Appl Genet ; 115(5): 601-15, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17622508

RESUMO

A panel of 13 sugar beet lines and one genotype each of the Beta vulgaris cultivars red beet and Swiss chard, and B. vulgaris ssp. maritima were used to identify polymorphisms in alignments of genomic DNA sequences derived from 315 EST- and 43 non-coding RFLP-derived loci. In sugar beet lines, loci of expressed genes showed an average SNP frequency of 1/72 bp, 1 in 58 bp in non-coding sequences, increasing to 1/47 bp upon the addition of the remaining genotypes. Within analysed DNA fragments, alleles at different SNP positions displayed linkage disequilibrium indicative of haplotype structures. On average 2.7 haplotypes were found in sugar beet lines, and haplotype conservation in expressed genes appeared to exceed 500 bp in length. Seven different genotyping techniques including SNP detection by MALDI-TOF mass spectrometry, pyrosequencing and fluorescence scanning of labelled nucleotides were employed to perform 712 segregation analyses for 538 markers in three F(2) populations. Functions were predicted for 492 mapped sequences. Genetic maps comprised 305 loci covering 599.8 cM in population K1, 241 loci distributed over 636.6 cM in population D2, and 166 loci over 507.1 cM in population K2, respectively. Based on 156 markers common to more than one population an integrated map was constructed with 524 loci covering 664.3 cM. For 377 loci the genome positions of the most similar sequences from A. thaliana were identified, but little evidence for previously presented ancestral genome structures was found.


Assuntos
Beta vulgaris/genética , Mapeamento Cromossômico/métodos , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Arabidopsis/genética , Etiquetas de Sequências Expressas , Marcadores Genéticos , Genoma de Planta , Haplótipos , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA