Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cancer Discov ; 14(6): 994-1017, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38593348

RESUMO

RAS-driven cancers comprise up to 30% of human cancers. RMC-6236 is a RAS(ON) multi-selective noncovalent inhibitor of the active, GTP-bound state of both mutant and wild-type variants of canonical RAS isoforms with broad therapeutic potential for the aforementioned unmet medical need. RMC-6236 exhibited potent anticancer activity across RAS-addicted cell lines, particularly those harboring mutations at codon 12 of KRAS. Notably, oral administration of RMC-6236 was tolerated in vivo and drove profound tumor regressions across multiple tumor types in a mouse clinical trial with KRASG12X xenograft models. Translational PK/efficacy and PK/PD modeling predicted that daily doses of 100 mg and 300 mg would achieve tumor control and objective responses, respectively, in patients with RAS-driven tumors. Consistent with this, we describe here objective responses in two patients (at 300 mg daily) with advanced KRASG12X lung and pancreatic adenocarcinoma, respectively, demonstrating the initial activity of RMC-6236 in an ongoing phase I/Ib clinical trial (NCT05379985). SIGNIFICANCE: The discovery of RMC-6236 enables the first-ever therapeutic evaluation of targeted and concurrent inhibition of canonical mutant and wild-type RAS-GTP in RAS-driven cancers. We demonstrate that broad-spectrum RAS-GTP inhibition is tolerable at exposures that induce profound tumor regressions in preclinical models of, and in patients with, such tumors. This article is featured in Selected Articles from This Issue, p. 897.


Assuntos
Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas p21(ras)/genética , Feminino , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Guanosina Trifosfato/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Masculino
2.
Nature ; 629(8013): 919-926, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38589574

RESUMO

RAS oncogenes (collectively NRAS, HRAS and especially KRAS) are among the most frequently mutated genes in cancer, with common driver mutations occurring at codons 12, 13 and 611. Small molecule inhibitors of the KRAS(G12C) oncoprotein have demonstrated clinical efficacy in patients with multiple cancer types and have led to regulatory approvals for the treatment of non-small cell lung cancer2,3. Nevertheless, KRASG12C mutations account for only around 15% of KRAS-mutated cancers4,5, and there are no approved KRAS inhibitors for the majority of patients with tumours containing other common KRAS mutations. Here we describe RMC-7977, a reversible, tri-complex RAS inhibitor with broad-spectrum activity for the active state of both mutant and wild-type KRAS, NRAS and HRAS variants (a RAS(ON) multi-selective inhibitor). Preclinically, RMC-7977 demonstrated potent activity against RAS-addicted tumours carrying various RAS genotypes, particularly against cancer models with KRAS codon 12 mutations (KRASG12X). Treatment with RMC-7977 led to tumour regression and was well tolerated in diverse RAS-addicted preclinical cancer models. Additionally, RMC-7977 inhibited the growth of KRASG12C cancer models that are resistant to KRAS(G12C) inhibitors owing to restoration of RAS pathway signalling. Thus, RAS(ON) multi-selective inhibitors can target multiple oncogenic and wild-type RAS isoforms and have the potential to treat a wide range of RAS-addicted cancers with high unmet clinical need. A related RAS(ON) multi-selective inhibitor, RMC-6236, is currently under clinical evaluation in patients with KRAS-mutant solid tumours (ClinicalTrials.gov identifier: NCT05379985).


Assuntos
Antineoplásicos , Mutação , Neoplasias , Proteína Oncogênica p21(ras) , Proteínas Proto-Oncogênicas p21(ras) , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Guanosina Trifosfato/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Proteína Oncogênica p21(ras)/antagonistas & inibidores , Proteína Oncogênica p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38105998

RESUMO

Broad-spectrum RAS inhibition holds the potential to benefit roughly a quarter of human cancer patients whose tumors are driven by RAS mutations. However, the impact of inhibiting RAS functions in normal tissues is not known. RMC-7977 is a highly selective inhibitor of the active (GTP-bound) forms of KRAS, HRAS, and NRAS, with affinity for both mutant and wild type (WT) variants. As >90% of human pancreatic ductal adenocarcinoma (PDAC) cases are driven by activating mutations in KRAS, we assessed the therapeutic potential of RMC-7977 in a comprehensive range of PDAC models, including human and murine cell lines, human patient-derived organoids, human PDAC explants, subcutaneous and orthotopic cell-line or patient derived xenografts, syngeneic allografts, and genetically engineered mouse models. We observed broad and pronounced anti-tumor activity across these models following direct RAS inhibition at doses and concentrations that were well-tolerated in vivo. Pharmacological analyses revealed divergent responses to RMC-7977 in tumor versus normal tissues. Treated tumors exhibited waves of apoptosis along with sustained proliferative arrest whereas normal tissues underwent only transient decreases in proliferation, with no evidence of apoptosis. Together, these data establish a strong preclinical rationale for the use of broad-spectrum RAS inhibition in the setting of PDAC.

4.
Cell Rep Methods ; 1(3)2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34671754

RESUMO

SUMMARY: A primary goal of the US National Cancer Institute's Ras initiative at the Frederick National Laboratory for Cancer Research is to develop methods to quantify RAS signaling to facilitate development of novel cancer therapeutics. We use targeted proteomics technologies to develop a community resource consisting of 256 validated multiple reaction monitoring (MRM)-based, multiplexed assays for quantifying protein expression and phosphorylation through the receptor tyrosine kinase, MAPK, and AKT signaling networks. As proof of concept, we quantify the response of melanoma (A375 and SK-MEL-2) and colorectal cancer (HCT-116 and HT-29) cell lines to BRAF inhibition by PLX-4720. These assays replace over 60 Western blots with quantitative mass spectrometry-based assays of high molecular specificity and quantitative precision, showing the value of these methods for pharmacodynamic measurements and mechanism of action studies. Methods, fit-for-purpose validation, and results are publicly available as a resource for the community at assays.cancer.gov. MOTIVATION: A lack of quantitative, multiplexable assays for phosphosignaling limits comprehensive investigation of aberrant signaling in cancer and evaluation of novel treatments. To alleviate this limitation, we sought to develop assays using targeted mass spectrometry for quantifying protein expression and phosphorylation through the receptor tyrosine kinase, MAPK, and AKT signaling networks. The resulting assays provide a resource for replacing over 60 Western blots in examining cancer signaling and tumor biology with high molecular specificity and quantitative rigor.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espectrometria de Massas/métodos , Receptores Proteína Tirosina Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno , Tirosina
5.
SLAS Discov ; 26(7): 922-932, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33896272

RESUMO

Oncogenic forms of KRAS proteins are known to be drivers of pancreatic, colorectal, and lung cancers. The goal of this study is to identify chemical leads that inhibit oncogenic KRAS signaling. We first developed an isogenic panel of mouse embryonic fibroblast (MEF) cell lines that carry wild-type RAS, oncogenic KRAS, and oncogenic BRAF. We validated these cell lines by screening against a tool compound library of 1402 annotated inhibitors in an adenosine triphosphate (ATP)-based cell viability assay. Subsequently, this MEF panel was used to conduct a high-throughput phenotypic screen in a cell viability assay with a proprietary compound library. All 126 compounds that exhibited a selective activity against mutant KRAS were selected and prioritized based on their activities in secondary assays. Finally, five chemical clusters were chosen. They had specific activity against SW620 and LS513 over Colo320 colorectal cancer cell lines. In addition, they had no effects on BRAFV600E, MEK1, extracellular signal-regulated kinase 2 (ERK2), phosphoinositide 3-kinase alpha (PI3Kα), AKT1, or mammalian target of rapamycin (mTOR) as tested in in vitro enzymatic activity assays. Biophysical assays demonstrated that these compounds did not bind directly to KRAS. We further identified the mechanism of action and showed that three of them have CDK9 inhibitory activity. In conclusion, we have developed and validated an isogenic MEF panel that was used successfully to identify RAS oncogenic or wild-type allele-specific vulnerabilities. Furthermore, we identified sensitivity of oncogenic KRAS-expressing cells to CDK9 inhibitors, which warrants future studies of treating KRAS-driven cancers with CDK9 inhibitors.


Assuntos
Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ensaios de Triagem em Larga Escala , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
6.
Anal Chem ; 92(7): 4971-4979, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32106676

RESUMO

We have developed a rapid and sensitive single-well dual-parametric method introduced in linked RAS nucleotide exchange and RAS/RAF-RBD interaction assays. RAS mutations are frequent drivers of multiple different human cancers, but the development of therapeutic strategies has been challenging. Traditionally, efforts to disrupt the RAS function have focused on nucleotide exchange inhibitors, GTP-RAS interaction inhibitors, and activators increasing GTPase activity of mutant RAS proteins. As the amount of biological knowledge grows, targeted biochemical assays enabling high-throughput screening have become increasingly interesting. We have previously introduced a homogeneous quenching resonance energy transfer (QRET) assay for nucleotide binding studies with RAS and heterotrimeric G proteins. Here, we introduce a novel homogeneous signaling technique called QTR-FRET, which combine QRET technology and time-resolved Förster resonance energy transfer (TR-FRET). The dual-parametric QTR-FRET technique enables the linking of guanine nucleotide exchange factor-induced Eu3+-GTP association to RAS, monitored at 615 nm, and subsequent Eu3+-GTP-loaded RAS interaction with RAF-RBD-Alexa680 monitored at 730 nm. Both reactions were monitored in a single-well assay applicable for inhibitor screening and real-time reaction monitoring. This homogeneous assay enables separable detection of both nucleotide exchange and RAS/RAF interaction inhibitors using low nanomolar protein concentrations. To demonstrate a wider applicability as a screening and real-time reaction monitoring method, the QTR-FRET technique was also applied for G(i)α GTP-loading and pertussis toxin-catalyzed ADP-ribosylation of G(i)α, for which we synthesized a novel γ-GTP-Eu3+ molecule. The study indicates that the QTR-FRET detection technique presented here can be readily applied to dual-parametric assays for various targets.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transferência Ressonante de Energia de Fluorescência , Fatores de Troca do Nucleotídeo Guanina/química , Guanosina Trifosfato/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética
7.
Proc Natl Acad Sci U S A ; 116(44): 22122-22131, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31611389

RESUMO

KRAS mutations occur in ∼35% of colorectal cancers and promote tumor growth by constitutively activating the mitogen-activated protein kinase (MAPK) pathway. KRAS mutations at codons 12, 13, or 61 are thought to prevent GAP protein-stimulated GTP hydrolysis and render KRAS-mutated colorectal cancers unresponsive to epidermal growth factor receptor (EGFR) inhibitors. We report here that KRAS G13-mutated cancer cells are frequently comutated with NF1 GAP but NF1 is rarely mutated in cancers with KRAS codon 12 or 61 mutations. Neurofibromin protein (encoded by the NF1 gene) hydrolyzes GTP directly in complex with KRAS G13D, and KRAS G13D-mutated cells can respond to EGFR inhibitors in a neurofibromin-dependent manner. Structures of the wild type and G13D mutant of KRAS in complex with neurofibromin (RasGAP domain) provide the structural basis for neurofibromin-mediated GTP hydrolysis. These results reveal that KRAS G13D is responsive to neurofibromin-stimulated hydrolysis and suggest that a subset of KRAS G13-mutated colorectal cancers that are neurofibromin-competent may respond to EGFR therapies.


Assuntos
Neoplasias Colorretais/genética , Receptores ErbB/antagonistas & inibidores , Guanosina Trifosfato/metabolismo , Neurofibromina 1/química , Proteínas Proto-Oncogênicas p21(ras)/química , Substituição de Aminoácidos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Domínio Catalítico , Linhagem Celular , Neoplasias Colorretais/tratamento farmacológico , Proteínas Ativadoras de GTPase/metabolismo , Guanosina Trifosfato/química , Humanos , Hidrólise , Modelos Moleculares , Neurofibromina 1/metabolismo , Neurofibromina 1/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genética
8.
Semin Cancer Biol ; 54: 174-182, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29432816

RESUMO

Development of therapeutic strategies against RAS-driven cancers has been challenging due in part to a lack of understanding of the biology of the system and the ability to design appropriate assays and reagents for targeted drug discovery efforts. Recent developments in the field have opened up new avenues for exploration both through advances in the number and quality of reagents as well as the introduction of novel biochemical and cell-based assay technologies which can be used for high-throughput screening of compound libraries. The reagents and assays developed at the NCI RAS Initiative offer a suite of new weapons that could potentially be used to enable the next generation of RAS drug discovery efforts with the hope of finding novel therapeutics for a target once deemed undruggable.


Assuntos
Descoberta de Drogas , Proteínas ras/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Descoberta de Drogas/métodos , Descoberta de Drogas/normas , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ensaios de Seleção de Medicamentos Antitumorais/normas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Ligação Proteica/efeitos dos fármacos , Controle de Qualidade , Transdução de Sinais/efeitos dos fármacos , Proteínas ras/genética , Proteínas ras/metabolismo
9.
Sensors (Basel) ; 18(11)2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30453509

RESUMO

A new label-free molecular probe for luminescent nucleotide detection in neutral aqueous solution is presented. Phosphate-containing molecules, such as nucleotides possess vital role in cell metabolism, energy economy, and various signaling processes. Thus, the monitoring of nucleotide concentration and nucleotide related enzymatic reactions is of high importance. Two component lanthanide complex formed from Tb(III) ion carrier and light harvesting antenna, readily distinguishes nucleotides containing different number of phosphates and enable direct detection of enzymatic reactions converting nucleotide triphosphate (NTP) to nucleotide di/monophosphate or the opposite. Developed sensor enables the detection of enzymatic activity with a low nanomolar sensitivity, as highlighted with K-Ras and apyrase enzymes in their hydrolysis assays performed in a high throughput screening compatible 384-well plate format.

10.
Sci Signal ; 11(550)2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279169

RESUMO

The Ras-extracellular signal-regulated kinase pathway is critical for controlling cell proliferation, and its aberrant activation drives the growth of various cancers. Because many pathogens produce toxins that inhibit Ras activity, efforts to develop effective Ras inhibitors to treat cancer could be informed by studies of Ras inhibition by pathogens. Vibrio vulnificus causes fatal infections in a manner that depends on multifunctional autoprocessing repeats-in-toxin, a toxin that releases bacterial effector domains into host cells. One such domain is the Ras/Rap1-specific endopeptidase (RRSP), which site-specifically cleaves the Switch I domain of the small GTPases Ras and Rap1. We solved the crystal structure of RRSP and found that its backbone shares a structural fold with the EreA/ChaN-like superfamily of enzymes. Unlike other proteases in this family, RRSP is not a metalloprotease. Through nuclear magnetic resonance analysis and nucleotide exchange assays, we determined that the processing of KRAS by RRSP did not release any fragments or cause KRAS to dissociate from its bound nucleotide but instead only locally affected its structure. However, this structural alteration of KRAS was sufficient to disable guanine nucleotide exchange factor-mediated nucleotide exchange and prevent KRAS from binding to RAF. Thus, RRSP is a bacterial effector that represents a previously unrecognized class of protease that disconnects Ras from its signaling network while inducing limited structural disturbance in its target.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Cristalografia por Raios X , Endopeptidases/química , Endopeptidases/genética , Células HeLa , Humanos , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Conformação Proteica , Proteólise , Homologia de Sequência de Aminoácidos
11.
Artigo em Inglês | MEDLINE | ID: mdl-29101115

RESUMO

The high prevalence of KRAS mutations in human cancers and the lack of effective treatments for patients ranks KRAS among the most highly sought-after targets for preclinical oncologists. Pharmaceutical companies and academic laboratories have tried for decades to identify small molecule inhibitors of oncogenic KRAS proteins, but little progress has been made and many have labeled KRAS undruggable. However, recent progress in in silico screening, fragment-based drug design, disulfide tethered screening, and some emerging themes in RAS biology have caused the field to reconsider previously held notions about targeting KRAS. This review will cover some of the historical efforts to identify RAS inhibitors, and some of the most promising efforts currently being pursued.


Assuntos
Antineoplásicos/uso terapêutico , Desenho de Fármacos , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/antagonistas & inibidores , Dimerização , Endopeptidases/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Humanos , Inibidores de Proteases/uso terapêutico , Multimerização Proteica/fisiologia , Transdução de Sinais/efeitos dos fármacos
12.
Nat Chem Biol ; 13(1): 7-8, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27984577
13.
Mol Cell ; 64(5): 875-887, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889448

RESUMO

Ras pathway signaling plays a critical role in cell growth control and is often upregulated in human cancer. The Raf kinases selectively interact with GTP-bound Ras and are important effectors of Ras signaling, functioning as the initiating kinases in the ERK cascade. Here, we identify a route for the phospho-inhibition of Ras/Raf/MEK/ERK pathway signaling that is mediated by the stress-activated JNK cascade. We find that key Ras pathway components, the RasGEF Sos1 and the Rafs, are phosphorylated on multiple S/TP sites in response to JNK activation and that the hyperphosphorylation of these sites renders the Rafs and Sos1 unresponsive to upstream signals. This phospho-regulatory circuit is engaged by cancer therapeutics, such as rigosertib and paclitaxel/Taxol, that activate JNK through mitotic and oxidative stress as well as by physiological regulators of the JNK cascade and may function as a signaling checkpoint to suppress the Ras pathway during conditions of cellular stress.


Assuntos
Glicina/análogos & derivados , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Paclitaxel , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Sulfonas , Ativação Enzimática/efeitos dos fármacos , Glicina/farmacocinética , Glicina/farmacologia , Células HeLa , Humanos , Estresse Oxidativo , Paclitaxel/farmacocinética , Paclitaxel/farmacologia , Fosforilação , Sulfonas/farmacocinética , Sulfonas/farmacologia , Proteínas ras/metabolismo
14.
Sci Rep ; 5: 15916, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26522388

RESUMO

Prenylated proteins play key roles in several human diseases including cancer, atherosclerosis and Alzheimer's disease. KRAS4b, which is frequently mutated in pancreatic, colon and lung cancers, is processed by farnesylation, proteolytic cleavage and carboxymethylation at the C-terminus. Plasma membrane localization of KRAS4b requires this processing as does KRAS4b-dependent RAF kinase activation. Previous attempts to produce modified KRAS have relied on protein engineering approaches or in vitro farnesylation of bacterially expressed KRAS protein. The proteins produced by these methods do not accurately replicate the mature KRAS protein found in mammalian cells and the protein yield is typically low. We describe a protocol that yields 5-10 mg/L highly purified, farnesylated, and methylated KRAS4b from insect cells. Farnesylated and methylated KRAS4b is fully active in hydrolyzing GTP, binds RAF-RBD on lipid Nanodiscs and interacts with the known farnesyl-binding protein PDEδ.


Assuntos
Lipídeos/fisiologia , Prenilação de Proteína/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Biofísica/métodos , Membrana Celular/metabolismo , Células Cultivadas , Guanosina Trifosfato/metabolismo , Humanos , Insetos/metabolismo , Metilação , Ligação Proteica/fisiologia , Quinases raf/metabolismo
15.
Cell ; 163(5): 1237-1251, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26590425

RESUMO

K-Ras and H-Ras share identical effectors and have similar properties; however, the high degree of tumor-type specificity associated with K-Ras and H-Ras mutations suggests that they have unique roles in oncogenesis. Here, we report that oncogenic K-Ras, but not H-Ras, suppresses non-canonical Wnt/Ca(2+) signaling, an effect that contributes strongly to its tumorigenic properties. K-Ras does this by binding to calmodulin and so reducing CaMKii activity and expression of Fzd8. Restoring Fzd8 in K-Ras mutant pancreatic cells suppresses malignancy, whereas depletion of Fzd8 in H-Ras(V12)-transformed cells enhances their tumor initiating capacity. Interrupting K-Ras-calmodulin binding using genetic means or by treatment with an orally active protein kinase C (PKC)-activator, prostratin, represses tumorigenesis in K-Ras mutant pancreatic cancer cells. These findings provide an alternative way to selectively target this "undruggable" protein.


Assuntos
Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores de Superfície Celular/metabolismo , Via de Sinalização Wnt , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Calmodulina/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Genes ras , Humanos , Camundongos , Dados de Sequência Molecular , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Papiloma/metabolismo , Ésteres de Forbol/administração & dosagem , Fosforilação , Ligação Proteica/efeitos dos fármacos
16.
Per Med ; 12(3): 183-186, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29771643
17.
Genome Biol ; 15(10): 476, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25273840

RESUMO

BACKGROUND: Protein synthesis is tightly regulated and alterations to translation are characteristic of many cancers.Translation regulation is largely exerted at initiation through the eukaryotic translation initiation factor 4 F (eIF4F). eIF4F is pivotal for oncogenic signaling as it integrates mitogenic signals to amplify production of pro-growth and pro-survival factors. Convergence of these signals on eIF4F positions this factor as a gatekeeper of malignant fate. While the oncogenic properties of eIF4F have been characterized, genome-wide evaluation of eIF4F translational output is incomplete yet critical for developing novel translation-targeted therapies. RESULTS: To understand the impact of eIF4F on malignancy, we utilized a genome-wide ribosome profiling approach to identify eIF4F-driven mRNAs in MDA-MB-231 breast cancer cells. Using Silvestrol, a selective eIF4A inhibitor, we identify 284 genes that rely on eIF4A for efficient translation. Our screen confirmed several known eIF4F-dependent genes and identified many unrecognized targets of translation regulation. We show that 5'UTR complexity determines Silvestrol-sensitivity and altering 5'UTR structure modifies translational output. We highlight physiological implications of eIF4A inhibition, providing mechanistic insight into eIF4F pro-oncogenic activity. CONCLUSIONS: Here we describe the transcriptome-wide consequence of eIF4A inhibition in malignant cells, define mRNA features that confer eIF4A dependence, and provide genetic support for Silvestrol's anti-oncogenic properties. Importantly, our results show that eIF4A inhibition alters translation of an mRNA subset distinct from those affected by mTOR-mediated eIF4E inhibition. These results have significant implications for therapeutically targeting translation and underscore a dynamic role for eIF4F in remodeling the proteome toward malignancy.


Assuntos
RNA Helicases DEAD-box/fisiologia , Fator de Iniciação 4A em Eucariotos/fisiologia , Transcriptoma/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , RNA Helicases DEAD-box/antagonistas & inibidores , RNA Helicases DEAD-box/metabolismo , Fator de Iniciação 4A em Eucariotos/antagonistas & inibidores , Fator de Iniciação 4A em Eucariotos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/metabolismo , Triterpenos/farmacologia
18.
Nat Rev Cancer ; 14(7): 455-67, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24957944

RESUMO

The identification of mutationally activated BRAF in many cancers altered our conception of the part played by the RAF family of protein kinases in oncogenesis. In this Review, we describe the development of BRAF inhibitors and the results that have emerged from their analysis in both the laboratory and the clinic. We discuss the spectrum of RAF mutations in human cancer and the complex interplay between the tissue of origin and the response to RAF inhibition. Finally, we enumerate mechanisms of resistance to BRAF inhibition that have been characterized and postulate how strategies of RAF pathway inhibition may be extended in scope to benefit not only the thousands of patients who are diagnosed annually with BRAF-mutated metastatic melanoma but also the larger patient population with malignancies harbouring mutationally activated RAF genes that are ineffectively treated with the current generation of BRAF kinase inhibitors.


Assuntos
Melanoma/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Animais , Resistencia a Medicamentos Antineoplásicos , Humanos , Melanoma/enzimologia , Melanoma/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Neoplasias Cutâneas/enzimologia , Neoplasias Cutâneas/genética
19.
Arterioscler Thromb Vasc Biol ; 34(5): 1011-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24603679

RESUMO

OBJECTIVE: It is well established that angiogenesis is a complex and coordinated multistep process. However, there remains a lack of information about the genes that regulate individual stages of vessel formation. Here, we aimed to define the role of human interferon-induced transmembrane protein 1 (IFITM1) during blood vessel formation. APPROACH AND RESULTS: We identified IFITM1 in a microarray screen for genes differentially regulated by endothelial cells (ECs) during an in vitro angiogenesis assay and found that IFITM1 expression was strongly induced as ECs sprouted and formed lumens. We showed by immunohistochemistry that human IFITM1 was expressed by stable blood vessels in multiple organs. siRNA-mediated knockdown of IFITM1 expression spared EC sprouting but completely disrupted lumen formation, in both in vitro and in an in vivo xeno-transplant model. ECs lacking IFITM1 underwent early stages of lumenogenesis (ie, intracellular vacuole formation) but failed to mature or expand lumens. Coimmunoprecipitation studies confirmed occludin as an IFITM1 binding partner in ECs, and immunocytochemistry showed a lack of occludin at endothelial tight junctions in the absence of IFITM1. Finally, time-lapse video microscopy revealed that IFITM1 is required for the formation of stable cell-cell contacts during endothelial lumen formation. CONCLUSIONS: IFITM1 is essential for the formation of functional blood vessels and stabilizes EC-EC interactions during endothelial lumen formation by regulating tight junction assembly.


Assuntos
Antígenos de Diferenciação/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Animais , Antígenos de Diferenciação/genética , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Células Endoteliais da Veia Umbilical Humana/transplante , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos ICR , Camundongos SCID , Microscopia de Vídeo , Ocludina/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Interferência de RNA , Transdução de Sinais , Junções Íntimas/metabolismo , Fatores de Tempo , Imagem com Lapso de Tempo , Transfecção
20.
Cancer Res ; 74(8): 2238-45, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24523442

RESUMO

Treatment with RAF inhibitors such as vemurafenib causes the development of cutaneous squamous cell carcinomas (cSCC) or keratoacanthomas as a side effect in 18% to 30% of patients. It is known that RAF inhibitors activate the mitogen-activated protein kinase (MAPK) pathway and stimulate growth of RAS-mutated cells, possibly accounting for up to 60% of cSCC or keratoacanthoma lesions with RAS mutations, but other contributing events are obscure. To identify such events, we evaluated tumors from patients treated with vemurafenib for the presence of human papilloma virus (HPV) DNA and identified 13% to be positive. Using a transgenic murine model of HPV-driven cSCC (K14-HPV16 mice), we conducted a functional test to determine whether administration of RAF inhibitors could promote cSCC in HPV-infected tissues. Vemurafenib treatment elevated MAPK markers and increased cSCC incidence from 22% to 70% in this model. Furthermore, 55% of the cSCCs arising in vemurafenib-treated mice exhibited a wild-type Ras genotype, consistent with the frequency observed in human patients. Our results argue that HPV cooperates with vemurafenib to promote tumorigenesis, in either the presence or absence of RAS mutations.


Assuntos
Carcinoma de Células Escamosas/etiologia , Papillomavirus Humano 16/fisiologia , Indóis/efeitos adversos , Neoplasias Cutâneas/etiologia , Sulfonamidas/efeitos adversos , Animais , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , Linhagem Celular Tumoral , Detecção Precoce de Câncer , Genótipo , Papillomavirus Humano 16/genética , Humanos , Indóis/administração & dosagem , Queratina-14/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/virologia , Sulfonamidas/administração & dosagem , Vemurafenib
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA