Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 8(3)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35330277

RESUMO

With rare exceptions, the shape and appearance of lichen thalli are determined by the fungal partner; thus, mycobiont identity is normally used for lichen identification. However, it has repeatedly been shown in recent decades that phenotypic data often does not correspond with fungal gene evolution. Here, we report such a case in a three-species complex of red-fruited Cladonia lichens, two of which clearly differ morphologically, chemically, ecologically and in distribution range. We analysed 64 specimens of C. bellidiflora, C. polydactyla and C. umbricola, mainly collected in Europe, using five variable mycobiont-specific and two photobiont-specific molecular markers. All mycobiont markers exhibited very low variability and failed to separate the species. In comparison, photobiont identity corresponded better with lichen phenotype and separated esorediate C. bellidiflora from the two sorediate taxa. These results can be interpreted either as an unusual case of lichen photomorphs or as an example of recent speciation, in which phenotypic differentiation precedes the separation of the molecular markers. We hypothesise that association with different photobionts, which is probably related to habitat differentiation, may have triggered speciation in the mycobiont species.

2.
Lichenologist (Lond) ; 52(2): 61-181, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32788812

RESUMO

Lichens are widely acknowledged to be a key component of high latitude ecosystems. However, the time investment needed for full inventories and the lack of taxonomic identification resources for crustose lichen and lichenicolous fungal diversity have hampered efforts to fully gauge the depth of species richness in these ecosystems. Using a combination of classical field inventory and extensive deployment of chemical and molecular analysis, we assessed the diversity of lichens and associated fungi in Glacier Bay National Park, Alaska (USA), a mixed landscape of coastal boreal rainforest and early successional low elevation habitats deglaciated after the Little Ice Age. We collected nearly 5000 specimens and found a total of 947 taxa, including 831 taxa of lichen-forming and 96 taxa of lichenicolous fungi together with 20 taxa of saprotrophic fungi typically included in lichen studies. A total of 98 species (10.3% of those detected) could not be assigned to known species and of those, two genera and 27 species are described here as new to science: Atrophysma cyanomelanos gen. et sp. nov., Bacidina circumpulla, Biatora marmorea, Carneothele sphagnicola gen. et sp. nov., Cirrenalia lichenicola, Corticifraga nephromatis, Fuscidea muskeg, Fuscopannaria dillmaniae, Halecania athallina, Hydropunctaria alaskana, Lambiella aliphatica, Lecania hydrophobica, Lecanora viridipruinosa, Lecidea griseomarginata, L. streveleri, Miriquidica gyrizans, Niesslia peltigerae, Ochrolechia cooperi, Placynthium glaciale, Porpidia seakensis, Rhizocarpon haidense, Sagiolechia phaeospora, Sclerococcum fissurinae, Spilonema maritimum, Thelocarpon immersum, Toensbergia blastidiata and Xenonectriella nephromatis. An additional 71 'known unknown' species are cursorily described. Four new combinations are made: Lepra subvelata (G. K. Merr.) T. Sprib., Ochrolechia minuta (Degel.) T. Sprib., Steineropsis laceratula (Hue) T. Sprib. & Ekman and Toensbergia geminipara (Th. Fr.) T. Sprib. & Resl. Thirty-eight taxa are new to North America and 93 additional taxa new to Alaska. We use four to eight DNA loci to validate the placement of ten of the new species in the orders Baeomycetales, Ostropales, Lecanorales, Peltigerales, Pertusariales and the broader class Lecanoromycetes with maximum likelihood analyses. We present a total of 280 new fungal DNA sequences. The lichen inventory from Glacier Bay National Park represents the second largest number of lichens and associated fungi documented from an area of comparable size and the largest to date in North America. Coming from almost 60°N, these results again underline the potential for high lichen diversity in high latitude ecosystems.

3.
Mol Ecol ; 21(13): 3250-65, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22571538

RESUMO

An extraordinary diversity of epiphytic lichens is found in the boreal rainforest of central Norway, the highest-latitude rainforest in the world. These rainforest relicts are located in ravine systems, and clear cutting has increased the distance between remaining patches. We hypothesized that the relatively small lichen populations in the remaining forest stands have suffered a depletion of genetic diversity through bottlenecks and founder events. To test this hypothesis, we assessed genetic diversity and structure in the populations of the tripartite lichen Lobaria pulmonaria using eight SSR loci. We sampled thalli growing on Picea abies branches and propagules deposited in snow at three localities. Contrary to expectations, we found high genetic diversity in lichen and snow samples, and high effective sizes of the studied populations. Also, limited genetic differentiation between populations, high historical migration rates, and a high proportion of first generation immigrants were estimated, implying high connectivity across distances <30km. Almost all genetic variation was attributed to variation within sites; spatial genetic structures within populations were absent or appeared on small scales (5-10m). The high genetic diversity in the remaining old boreal rainforests shows that even relict forest patches might be suitable for conservation of genetic diversity.


Assuntos
Variação Genética , Genética Populacional , Líquens/genética , Alelos , Fluxo Gênico , Repetições de Microssatélites , Noruega , Picea , Densidade Demográfica , Neve , Árvores
4.
New Phytol ; 181(3): 683-92, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19032441

RESUMO

Relationships between thallus size and growth variables were analysed for the foliose Lobaria pulmonaria and the pendulous Usnea longissima with the aim of elucidating their morphogenesis and the factors determining thallus area (A) versus biomass (dry weight (DW) gain. Size and growth data originated from a factorial transplantation experiment that included three boreal climate zones (Atlantic, suboceanic and continental), each with three successional forest stands (clear-cut, young and old). When A was replaced by the estimated photobiont layer area in an area-DW scatterplot including all thalli (n = 1080), the two separate species clusters merged into one, suggesting similar allocation patterns between photobionts and mycobionts across growth forms. During transplantation, stand-specific water availability boosted area gain in foliose transplants, consistent with a positive role of water in fungal expansion. In pendulous lichens, A gain greatly exceeded DW gain, particularly in small transplants. The A gain in U. longissima increased with increasing DW:A ratio, consistent with a reallocation of carbon, presumably mobilized from the dense central chord. Pendulous lichens with cylindrical photobiont layers harvest light from all sides. Rapid and flexible three-dimensional A gain allows the colonization of spaces between canopy branches to utilize temporary windows of light in a growing canopy. Foliose lichens with a two-dimensional photobiont layer have more coupled A and DW gains.


Assuntos
Líquens/crescimento & desenvolvimento , Folhas de Planta/anatomia & histologia , Biomassa , Clima , Folhas de Planta/crescimento & desenvolvimento , Análise de Regressão , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA