Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 272: 106963, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38776608

RESUMO

Contaminants are increasingly accumulating in aquatic environments and biota, with potential adverse effects on individual organisms, communities and ecosystems. However, studies that explore the molecular changes in fish caused by environmentally relevant concentrations of metals, such as copper (Cu), are limited. This study uses embryos of the model organism zebrafish (Danio rerio) to investigate effect of Cu on the proteome and amino acid (AA) composition of fish. Wild-type embryos at 24 h post-fertilisation were exposed to Cu (2 µg L-1 to 120 µg L-1) for 96 h and the number of healthy larvae were determined based on larvae that had hatched and did not display loss of equilibrium (LOE). The effect concentrations where Cu caused a 10 % (EC10) or 50 % (EC50) decrease in the number of healthy larvae were calculated as 3.7 µg L-1 and 10.9 µg L-1, respectively. Proteomics analysis of embryos exposed to the EC10 and EC50 concentrations of Cu revealed the proteome to differ more strongly after 48 h than 96 h, suggesting the acclimatisation of some larvae. Exposure to excess Cu caused differentially expressed proteins (DEPs) involved in oxidative stress, mitochondrial respiration, and neural transduction as well as the modulation of the AAs (Proline, Glycine and Alanine). This is the first study to suggest that LOE displayed by Cu-stressed fish may involve the disruption to GABAergic proteins and the calcium-dependent inhibitory neurotransmitter GABA. Moreover, this study highlights that proteomics and AA analysis can be used to identify potential biomarkers for environmental monitoring.

2.
Environ Toxicol Chem ; 42(12): 2630-2641, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37728174

RESUMO

Multiple linear regression (MLR) models were developed for predicting chronic zinc toxicity to a freshwater microalga, Chlorella sp., using three toxicity-modifying factors (TMFs): pH, hardness, and dissolved organic carbon (DOC). The interactive effects between pH and hardness and between pH and DOC were also included. Models were developed at three different effect concentration (EC) levels: EC10, EC20, and EC50. Models were independently validated using six different zinc-spiked Australian natural waters with a range of water chemistries. Stepwise regression found hardness to be an influential TMF in model scenarios and was retained in all final models, while pH, DOC, and interactive terms had variable influence and were only retained in some models. Autovalidation and residual analysis of all models indicated that models generally predicted toxicity and that there was little bias based on individual TMFs. The MLR models, at all effect levels, performed poorly when predicting toxicity in the zinc-spiked natural waters during independent validation, with models consistently overpredicting toxicity. This overprediction may be from another unaccounted for TMF that may be present across all natural waters. Alternatively, this consistent overprediction questions the underlying assumption that models developed from synthetic laboratory test waters can be directly applied to natural water samples. Further research into the suitability of applying synthetic laboratory water-based models to a greater range of natural waters is needed. Environ Toxicol Chem 2023;42:2630-2641. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Chlorella , Microalgas , Poluentes Químicos da Água , Modelos Lineares , Concentração de Íons de Hidrogênio , Austrália , Água Doce , Água , Poluentes Químicos da Água/toxicidade , Compostos Orgânicos , Zinco/toxicidade
3.
Microbiol Spectr ; : e0275522, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37724869

RESUMO

A number of key factors can structure the gut microbiota of fish such as environment, diet, health state, and genotype. Mesonauta festivus, an Amazonian cichlid, is a relevant model organism to study the relative contribution of these factors on the community structure of fish gut microbiota. M. festivus has well-studied genetic populations and thrives in rivers with drastically divergent physicochemical characteristics. Here, we collected 167 fish from 12 study sites and used 16S and 18S rRNA metabarcoding approaches to characterize the gut microbiome structure of M. festivus. These data sets were analyzed in light of the host fish genotypes (genotyping-by-sequencing) and an extensive characterization of environmental physico-chemical parameters. We explored the relative contribution of environmental dissimilarity, the presence of parasitic taxa, and phylogenetic relatedness on structuring the gut microbiota. We documented occurrences of Nyctotherus sp. infecting a fish and linked its presence to a dysbiosis of the host gut microbiota. Moreover, we detected the presence of helminths which had a minor impact on the gut microbiota of their host. In addition, our results support a higher impact of the phylogenetic relatedness between fish rather than environmental similarity between sites of study on structuring the gut microbiota for this Amazonian cichlid. Our study in a heterogeneous riverscape integrates a wide range of factors known to structure fish gut microbiomes. It significantly improves understanding of the complex relationship between fish, their parasites, their microbiota, and the environment. IMPORTANCE The gut microbiota is known to play important roles in its host immunity, metabolism, and comportment. Its taxonomic composition is modulated by a complex interplay of factors that are hard to study simultaneously in natural systems. Mesonauta festivus, an Amazonian cichlid, is an interesting model to simultaneously study the influence of multiple variables on the gut microbiota. In this study, we explored the relative contribution of the environmental conditions, the presence of parasitic infections, and the genotype of the host on structuring the gut microbiota of M. festivus in Amazonia. Our results highlighted infections by a parasitic ciliate that caused a disruption of the gut microbiota and by parasitic worms that had a low impact on the microbiota. Finally, our results support a higher impact of the genotype than the environment on structuring the microbiota for this fish. These findings significantly improve understanding of the complex relationship among fish, their parasites, their microbiota, and the environment.

4.
Environ Toxicol Chem ; 42(12): 2614-2629, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37477462

RESUMO

Bioavailability models, for example, multiple linear regressions (MLRs) of water quality parameters, are increasingly being used to develop bioavailability-based water quality criteria for metals. However, models developed for the Northern Hemisphere cannot be adopted for Australia and New Zealand without first validating them against local species and local water chemistry characteristics. We investigated the applicability of zinc chronic bioavailability models to predict toxicity in a range of uncontaminated natural waters in Australia and New Zealand. Water chemistry data were compiled to guide a selection of waters with different zinc toxicity-modifying factors. Predicted toxicities using several bioavailability models were compared with observed chronic toxicities for the green alga Raphidocelis subcapitata and the native cladocerans Ceriodaphnia cf. dubia and Daphnia thomsoni. The most sensitive species to zinc in five New Zealand freshwaters was R. subcapitata (72-h growth rate), with toxicity ameliorated by high dissolved organic carbon (DOC) or low pH, and hardness having a minimal influence. Zinc toxicity to D. thomsoni (reproduction) was ameliorated by both high DOC and hardness in these same waters. No single trophic level-specific effect concentration, 10% (EC10) MLR was the best predictor of chronic toxicity to the cladocerans, and MLRs based on EC10 values both over- and under-predicted zinc toxicity. The EC50 MLRs better predicted toxicities to both the Australian and New Zealand cladocerans to within a factor of 2 of the observed toxicities in most waters. These findings suggest that existing MLRs may be useful for normalizing local ecotoxicity data to derive water quality criteria for Australia and New Zealand. The final choice of models will depend on their predictive ability, level of protection, and ease of use. Environ Toxicol Chem 2023;42:2614-2629. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Cladocera , Poluentes Químicos da Água , Animais , Modelos Lineares , Nova Zelândia , Concentração de Íons de Hidrogênio , Austrália , Compostos Orgânicos , Zinco/toxicidade , Água Doce , Poluentes Químicos da Água/toxicidade
5.
Microbiol Spectr ; 11(3): e0479322, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199657

RESUMO

The Amazon River basin sustains dramatic hydrochemical gradients defined by three water types: white, clear, and black waters. In black water, important loads of allochthonous humic dissolved organic matter (DOM) result from the bacterioplankton degradation of plant lignin. However, the bacterial taxa involved in this process remain unknown, since Amazonian bacterioplankton has been poorly studied. Its characterization could lead to a better understanding of the carbon cycle in one of the Earth's most productive hydrological systems. Our study characterized the taxonomic structure and functions of Amazonian bacterioplankton to better understand the interplay between this community and humic DOM. We conducted a field sampling campaign comprising 15 sites distributed across the three main Amazonian water types (representing a gradient of humic DOM), and a 16S rRNA metabarcoding analysis based on bacterioplankton DNA and RNA extracts. Bacterioplankton functions were inferred using 16S rRNA data in combination with a tailored functional database from 90 Amazonian basin shotgun metagenomes from the literature. We discovered that the relative abundances of fluorescent DOM fractions (humic-, fulvic-, and protein-like) were major drivers of bacterioplankton structure. We identified 36 genera for which the relative abundance was significantly correlated with humic DOM. The strongest correlations were found in the Polynucleobacter, Methylobacterium, and Acinetobacter genera, three low abundant but omnipresent taxa that possessed several genes involved in the main steps of the ß-aryl ether enzymatic degradation pathway of diaryl humic DOM residues. Overall, this study identified key taxa with DOM degradation genomic potential, the involvement of which in allochthonous Amazonian carbon transformation and sequestration merits further investigation. IMPORTANCE The Amazon basin discharge carries an important load of terrestrially derived dissolved organic matter (DOM) to the ocean. The bacterioplankton from this basin potentially plays important roles in transforming this allochthonous carbon, which has consequences on marine primary productivity and global carbon sequestration. However, the structure and function of Amazonian bacterioplanktonic communities remain poorly studied, and their interactions with DOM are unresolved. In this study, we (i) sampled bacterioplankton in all the main Amazon tributaries, (ii) combined information from the taxonomic structure and functional repertory of Amazonian bacterioplankton communities to understand their dynamics, (iii) identified the main physicochemical parameters shaping bacterioplanktonic communities among a set of >30 measured environmental parameters, and (iv) characterized how bacterioplankton structure varies according to the relative abundance of humic compounds, a by-product from the bacterial degradation process of allochthonous DOM.


Assuntos
Matéria Orgânica Dissolvida , Água , RNA Ribossômico 16S/genética , Organismos Aquáticos , Carbono/análise
6.
Water Res ; 237: 119975, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37104936

RESUMO

River regulation by dams can alter flow regimes and organic matter dynamics, but less is known about how unregulated tributaries regulate organic matter composition and processing in the regulated river below the confluence. This study reports on water chemistry, especially dissolved organic matter (DOM) concentration and composition (dissolved organic carbon (DOC), organic nitrogen (DON), organic phosphorus (DOP) and combined amino acids (DCAA)) along the regulated Tumut and unregulated Goobarragandra (tributary) rivers under different flow conditions (base flow vs storm event) in south-east Australia. The tributary was significantly different from regulated and downstream sites during base flow conditions with higher temperature, pH, buffering capacity, DOC and nutrient concentrations (DON, DOP, DCAA). DOM characterisation by spectrometry and size exclusion chromatography revealed that the tributary contained a higher proportion of terrestrially derived humic-like and fulvic-like DOM. In contrast, regulated and downstream sites contained higher proportion of microbially derived DOM such as low molecular weight neutrals and protein-like components. Storm pulses of tributary flows into the regulated system, influenced both concentration and composition of DOM at the downstream site, which more strongly resembled the tributary site than the regulated site during the storm event. Additionally, we found that the tributary supplied fresh DOM, including small organic molecules to the regulated system during storm events. The presence of these different types of labile DOM can increase primary productivity and ecological functioning within regulated river reaches downstream of tributary junctions. This has important implications for the protection of unregulated tributary inflows within regulated river basins.


Assuntos
Matéria Orgânica Dissolvida , Rios , Rios/química , Nitrogênio/química , Fósforo
7.
Environ Pollut ; 318: 120797, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36496066

RESUMO

Zinc is a contaminant of concern in aquatic environments and is a known toxicant to many aquatic organisms. Dissolved organic matter (DOM) is a toxicity modifying factor for zinc and is an important water chemistry parameter. This study investigated the influence of DOM concentration, source, and water pH on the chronic toxicity of zinc to a freshwater microalga, Chlorella sp. The influence of DOM on zinc toxicity was dependent on both concentration and source. In the absence of DOM, the 72-h EC50 was 112 µg Zn.L-1. In the presence of a DOM high in fulvic-like components, zinc toxicity was either slightly decreased (<4-fold increase in EC10s across 15 mg C.L-1 range) or unchanged (minimal difference in EC50s). In the presence of a DOM high in humic-like (aromatic and high molecular weight) components, zinc toxicity was slightly decreased at the EC10 level and strongly increased at the EC50 level. The influence of pH on zinc toxicity was dependent on the source of DOM present in the water. In the presence of DOM high in humic-like components pH did not influence toxicity. In the presence of DOM high in fulvic-like components, pH had a significant effect on EC50 values. Labile zinc (measured by diffusive gradients in thin-films) followed linear relationships with dissolved zinc but could not explain the changes in observed toxicity, with similar DGT-labile zinc relationships shown for the two DOMs despite each DOM influencing toxicity differently. This indicates changes in toxicity may be unrelated to changes in zinc lability. The results suggest that increased toxicity of zinc in the presence of DOM may be due to direct uptake of Zn-DOM complexes. This study highlights the importance of considering DOM source and characteristics when incorporating DOM into water quality guidelines through bioavailability models.


Assuntos
Chlorella , Microalgas , Zinco/toxicidade , Água Doce/química , Compostos Orgânicos , Matéria Orgânica Dissolvida , Concentração de Íons de Hidrogênio
8.
Microbiol Spectr ; 10(6): e0206422, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36445161

RESUMO

Fish bacterial communities provide functions critical for their host's survival in contrasting environments. These communities are sensitive to environmental-specific factors (i.e., physicochemical parameters, bacterioplankton), and host-specific factors (i.e., host genetic background). The relative contribution of these factors shaping Amazonian fish bacterial communities is largely unknown. Here, we investigated this topic by analyzing the gill bacterial communities of 240 wild flag cichlids (Mesonauta festivus) from 4 different populations (genetic clusters) distributed across 12 sites in 2 contrasting water types (ion-poor/acidic black water and ion-rich/circumneutral white water). Transcriptionally active gill bacterial communities were characterized by a 16S rRNA metabarcoding approach carried on RNA extractions. They were analyzed using comprehensive data sets from the hosts genetic background (Genotyping-By-Sequencing), the bacterioplankton (16S rRNA) and a set of 34 environmental parameters. Results show that the taxonomic structure of 16S rRNA gene transcripts libraries were significantly different between the 4 genetic clusters and also between the 2 water types. However, results suggest that the contribution of the host's genetic background was relatively weak in comparison to the environment-related factors in structuring the relative abundance of different active gill bacteria species. This finding was also confirmed by a mixed-effects modeling analysis, which indicated that the dissimilarity between the taxonomic structure of bacterioplanktonic communities possessed the best explicative power regarding the dissimilarity between gill bacterial communities' structure, while pairwise fixation indexes (FST) from the hosts' genetic data only had a weak explicative power. We discuss these results in terms of bacterial community assembly processes and flag cichlid fish ecology. IMPORTANCE Host-associated microbial communities respond to factors specific to the host physiology, genetic backgrounds, and life history. However, these communities also show different degrees of sensitivity to environment-dependent factors, such as abiotic physico-chemical parameters and ecological interactions. The relative importance of host- versus environment-associated factors in shaping teleost bacterial communities is still understudied and is paramount for their conservation and aquaculture. Here, we studied the relative importance of host- and environment-associated factors structuring teleost bacterial communities using gill samples from a wild Amazonian teleost model (Mesonauta festivus) sampled in contrasting habitats along a 1500 km section of the Amazonian basin, thus ensuring high genetic diversity. Results showed that the contribution of the host's genetic background was weak compared to environment-related bacterioplanktonic communities in shaping gill bacterial assemblages, thereby suggesting that our understanding of teleost microbiome assembly could benefit from further studies focused on the ecological interplay between host-associated and free-living communities.


Assuntos
Brânquias , Microbiota , Animais , RNA Ribossômico 16S/genética , Brânquias/química , Brânquias/microbiologia , Peixes/genética , Peixes/microbiologia , Microbiota/fisiologia , Água , Genômica , Bactérias/genética
9.
Mol Ecol ; 31(18): 4656-4671, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35729748

RESUMO

Associations between host genotype and host-associated microbiomes have been shown in a variety of animal clades, but studies on teleosts mostly show weak associations. Our study aimed to explore these relationships in four sympatric Serrasalmidae (i.e., piranha) teleosts from an Amazonian lake, using data sets from the hosts genomes (single nucleotide polymorphisms from genotyping by sequencing), skin and gut microbiomes (16S rRNA gene metataxonomics) and diets (COI metabarcoding) from the same fish individuals. First, we investigated whether there were significant covariations of microbiome and fish genotypes at the inter- and intraspecific levels. We also assessed the extent of covariation between Serrasalmidae diet and microbiome, to isolate genotypic from dietary effects on community structure. We observed a significant covariation of skin microbiomes and host genotypes at interspecific (R2  = 24.4%) and intraspecific (R2  = 6.2%) levels, whereas gut microbiomes correlated poorly with host genotypes. Serrasalmidae diet composition was significantly correlated to fish genotype only at the interspecific level (R2  = 5.4%), but did not covary with gut microbiome composition (Mantel R = -.04). Second, we investigated whether the study of interspecific differentiation could benefit from considering host-associated microbial communities in addition to host genotypes. By using a nonmetric multidimensional scaling (NMDS) ordination-based approach, we observed that ordinations from skin- and gut species-specific bacterial biomarkers identified through a random forest algorithm could significantly increase the average interspecific differentiation detected through host genotype data alone. Although future studies encompassing additional species and environments are needed, our results suggest Serrasalmidae microbiomes could constitute an insightful trait to be considered when studying the interspecific differences between members of this clade.


Assuntos
Caraciformes , Microbioma Gastrointestinal , Microbiota , Animais , Caraciformes/genética , Microbioma Gastrointestinal/genética , Genômica , Microbiota/genética , RNA Ribossômico 16S/genética
10.
Aquat Toxicol ; 248: 106179, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35576718

RESUMO

Copper (Cu) is one of the most harmful contaminants in fresh-water systems. Fish larvae such as sacfry are particularly vulnerable to metals such as copper (Cu) due to a less-developed excretory organ system and permeable skin that can absorb metals directly from the water. However, the sublethal effects of metals on this life stage are not well understood. This study assessed the sublethal toxicity of Cu on purple-spotted gudgeon sacfry (PSG, Mogurnda adspersa). For this purpose, 96 h Cu toxicity bioassays were performed and toxic effects of Cu on PSG were measured at different levels of biological organization, from the individual (loss of equilibrium, wet weight), to tissue (chemical changes in retinal tissue composition) and molecular responses (whole body amino acid (AA) profiles). The EC10 and EC50 (ECx: effect concentration that affected X% of test organisms) were found to be 12 (9 - 15) µg Cu L-1 and 22 (19 - 24) µg Cu L-1, respectively. Copper stress caused a decrease in total amino acid content and changed the AA profile of PSG compared to the controls. Proton-induced X-ray emission (PIXE) mapping techniques showed accumulation of Cu in the retinal tissues disturbing the distribution of other elements such as zinc, sulfur, phosphorus and potassium. Fourier-transform infrared (FTIR) microspectroscopy of control and Cu treated eye tissues revealed a change in protein secondary structure in retinal tissues in response to Cu accumulation, as well as decreased levels of the molecular retinal, consistent with the degradation of rhodopsin, a key protein in the visual sensory system. This is the first study to demonstrate the multi-level responses of PSG arising from exposure to environmentally realistic Cu concentrations and suggests that AA profiling can serve as a useful tool to assess the impacts of metals on fresh-water organisms.


Assuntos
Perciformes , Poluentes Químicos da Água , Aminoácidos , Animais , Cobre/metabolismo , Perciformes/metabolismo , Água , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade
11.
Environ Sci Process Impacts ; 24(5): 783-793, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35442258

RESUMO

Zinc is an essential element for aquatic organisms, however, activities such as mining and refining, as well as zinc's ubiquitous role in modern society can contribute to elevated environmental concentrations of zinc. Water hardness is widely accepted as an important toxicity modifying factor for metals in aquatic systems, though other factors such as pH are also important. This study investigated the influence of increasing water hardness, at three different pH values (6.7, 7.6 and 8.3), on the chronic toxicity of zinc to the growth rate of a microalgae, Chlorella sp. Zinc toxicity decreased with increasing hardness from 5 to 93 mg CaCO3 L-1 at all three pH values tested. The 72 h growth rate inhibition EC50 values ranged from 6.2 µg Zn L-1 (at 5 mg CaCO3 L-1, pH 8.3) to 184 µg Zn L-1 (at 92 mg CaCO3 L-1, pH 6.7). Increases in hardness from 93 to 402 mg CaCO3 L-1 generally resulted in no significant (p > 0.05) reduction in zinc toxicity. DGT-labile zinc measurements did not correspond with the observed changes in zinc toxicity as hardness was varied within a pH treatment. This suggests that cationic competition from increased hardness is decreasing zinc toxicity, rather than changes in metal lability. This study highlighted that current hardness algorithms used in water quality guidelines may not be sufficiently protective of sensitive species, such as Chlorella sp., in high hardness waters.


Assuntos
Chlorella , Microalgas , Poluentes Químicos da Água , Cobre/toxicidade , Água Doce , Dureza , Concentração de Íons de Hidrogênio , Metais , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade
12.
Ecotoxicol Environ Saf ; 233: 113336, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35228027

RESUMO

Contamination of freshwaters is increasing globally, with microalgae considered one of the most sensitive taxa to metal pollution. Here, we used 72 h bioassays to explore the biochemical effects of copper (Cu) on the amino acid (AA) profile and proteome of Chlorella sp. and advance our understanding of the molecular changes that occur in algal cells during exposure to environmentally realistic Cu concentrations. The Cu concentrations required to inhibit algal growth rate by 10% (EC10) and 50% (EC50) were 1.0 (0.7-1.2) µg L-1 and 2.0 (1.9-2.4) µg L-1, respectively. The AA profile of Chlorella sp. showed increases in glycine and decreases in isoleucine, leucine, valine, and arginine, with increasing Cu. Proteomic analysis revealed the modulation of several proteins involved in energy production pathways, including: photosynthesis, carbon fixation, glycolysis, and oxidative phosphorylation, which likely assists in meeting increased energy demands under Cu-stressed conditions. Copper exposure also caused up-regulation of cellular processes and signalling proteins, and the down-regulation of proteins related to ribosomal structure and protein translation. These changes in biomolecular pathways have direct effects on the AA profile and total protein content and provide an explanation for the observed changes in amino acid profile, cell growth and morphology. This study shows the complex mode of action of Cu on Chlorella under environmentally realistic Cu concentrations and highlights several potential biomarkers for future investigations.


Assuntos
Chlorella , Microalgas , Poluentes Químicos da Água , Aminoácidos/metabolismo , Chlorella/efeitos dos fármacos , Chlorella/metabolismo , Cobre/análise , Água Doce , Microalgas/metabolismo , Proteoma/metabolismo , Proteômica , Estresse Fisiológico/efeitos dos fármacos , Poluentes Químicos da Água/análise
13.
Water Res ; 209: 117967, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34936976

RESUMO

Stormwater runoff typically contains significant quantities of metal contaminants that enter urban waterways over short durations and represent a potential risk to water quality. The origin of metals within the catchment and processes that occur over the storm can control the partitioning of metals between a range of different forms. Understanding the fraction of metals present in a form that is potentially bioavailable to aquatic organisms is useful for environmental risk assessment. To help provide this information, the forms and dynamics of metal contaminants in an urban system were assessed across a storm. Temporal patterns in the concentration of metals in dissolved and particulate (total suspended solids; TSS) forms were assessed from water samples, and diffusive gradients in thin-films (DGTs) were deployed to measure the DGT-labile time-integrated metal concentration. Results indicate that the concentrations of dissolved and TSS-associated metals increased during the storm, with the metals Al, Cd, Co, Cu, Pb and Zn representing the greatest concern relative to water quality guideline values (GVs). The portion of labile metal as measured by DGT devices indicated that during the storm a substantial fraction (∼98%) of metals were complexed and pose a lower risk of acute toxicity to aquatic organisms. Comparison of DGT results to GVs indicate that current GVs are likely quite conservative when assessing stormwater pollution risks with regards to metal contaminants. This study provides valuable insight into the forms and dynamics of metals in an urban system receiving stormwater inputs and assists with the development of improved approaches for the assessment of short-term, intermittent discharge events.

14.
Environ Pollut ; 284: 117536, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34261228

RESUMO

Acid mine drainage (AMD) is one of the major environmental problems impacting aquatic ecosystems globally. We studied changes in the community composition of macroinvertebrates and amino acid (AA) profiles of dominant taxa along an AMD contamination gradient within the Dee River, Queensland, Australia to understand how AMD can affect the biomolecular composition of macroinvertebrates. Taxa richness and community composition of macroinvertebrates changed widely along the AMD gradient with significantly lower taxa richness recorded at the polluted sites compared to upstream and downstream sites. The Dipteran families: Chironomidae and Ceratopogonidae, the Odonata family Gomphidae, and the Coleoptera family Dytiscidae were the only families found at all sampling sites and were used here for AA analysis. There were significant variations in the AA profiles among the studied taxa. The AA profile of each taxon also varied among upstream, polluted and downstream sites suggesting that contamination of a river system with acid mine drainage not only alters the overall macroinvertebrate community composition but also significantly influences the AA profile of organisms that are tolerant to AMD. This study highlights the potential of using AA profiling to study the response of aquatic organisms to contamination gradients such as those associated with AMD.


Assuntos
Ecossistema , Invertebrados , Aminoácidos , Animais , Austrália , Monitoramento Ambiental , Humanos , Queensland
15.
Environ Toxicol Chem ; 40(10): 2836-2845, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34297855

RESUMO

Increased focus on the development and application of bioavailability-based metal water quality guideline values requires increased understanding of the influence of water chemistry on metal bioavailability and toxicity. Development of empirical models, such as multiple linear regression models, requires the assessment of the influence of individual water quality parameters as toxicity-modifying factors. The present study investigated the effect of pH on the lability and toxicity of zinc (Zn) to a tropical green microalga (Chlorella sp.). Zinc speciation and lability were explored using the Windermere Humic Aqueous Model (WHAM7), ultrafiltration, and diffusive gradients in thin films (DGT). Zinc toxicity increased significantly with increasing pH from 6.7 to 8.3, with 50% growth inhibition effect concentrations decreasing from 185 to 53 µg l-1 across the pH range. Linear relationships between DGT-labile Zn and dissolved Zn did not vary across the tested pH range, nor did the linear relationship between dissolved (<0.45 µm) and ultrafiltered (<3 kDa) Zn. Our findings show that Zn toxicity to this freshwater alga is altered as a function of pH across environmentally realistic pH ranges and that these toxicity changes could not be explained by Zn speciation and lability as measured by DGT and WHAM7. Environ Toxicol Chem 2021;40:2836-2845. © 2021 SETAC.


Assuntos
Chlorella , Microalgas , Poluentes Químicos da Água , Água Doce , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade
16.
Environ Toxicol Chem ; 40(7): 1908-1918, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33751626

RESUMO

There have been limited studies on the effects of toxicity-modifying factors, such as dissolved organic matter (DOM), on the toxicity of metal mixtures to aquatic biota. The present study investigated the effects of DOM concentration (low, 2.8 ± 0.1 mg C/L; high, 11 ± 1.0 mg C/L) and DOM source (predominantly terrestrial or microbial) on the chronic toxicity of copper (Cu) and nickel (Ni) binary mixtures to the green freshwater microalga Chlorella sp. This was assessed by using a full factorial design of 72-h growth inhibition bioassays. Measured algal growth rate was compared with growth predicted by the concentration addition and independent action reference models. Model predictions were based on concentrations of dissolved metals, labile metals (measured by diffusive gradients in thin films [DGT]), and calculated free metal ions (determined by the Windermere Humic Aqueous Model). Copper/Ni mixture toxicity was synergistic to Chlorella sp. in the absence of added DOM, with evidence of metal concentration-dependent toxicity at low effect concentrations. As DOM concentration increased, the mixture interaction changed from synergism to noninteraction or antagonism depending on the metal speciation method used. The DOM source had no significant effect on mixture interaction when based on dissolved and free metal ion concentrations but was significantly different when based on DGT-labile metal concentrations. Ratio-dependent mixture interaction was observed in all treatments, with increased deviation from the reference model predictions as the mixture changed from Ni- to Cu-dominated. The present study demonstrated that both DOM concentration and source can significantly change metal mixture toxicity interactions and that these interactions can be interpreted differently depending on the metal speciation method used. Environ Toxicol Chem 2021;40:1908-1918. © 2021 SETAC.


Assuntos
Chlorella , Poluentes Químicos da Água , Cobre/análise , Cobre/toxicidade , Matéria Orgânica Dissolvida , Níquel/análise , Níquel/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
17.
Chemosphere ; 273: 128454, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33077193

RESUMO

Nickel is often a metal of interest in regulatory settings given its increasing prevalence in disturbed freshwaters and as a known toxicant to fish and algae. Dissolved organic matter (DOM) is a toxicity modifying factor for nickel and a ubiquitous water physicochemical parameter. This study investigated the effect of DOM concentration and source on the chronic toxicity of nickel to Chlorella sp. using three DOM at two concentrations (3.1 ± 1.8 and 12 ± 1.3 mg C/L). Nickel toxicity to Chlorella sp. was not strongly influenced by DOM concentration. In the absence of DOM, the 72-h EC50 for Chlorella sp. was 120 µg Ni/L. In the low DOM treatment, nickel toxicity was either unchanged or slightly increased (87-140 µg Ni/L) and unchanged or slightly decreased in the high DOM treatment (130-240 µg Ni/L). DOM source also had little effect on nickel toxicity, the largest differences in nickel toxicity occurring in the high DOM treatment. Labile nickel (measured by diffusive gradients in thin-films, DGT) followed strong linear relationships with dissolved nickel (R2 > 0.97). DOM concentration and source had limited effect on DGT-labile nickel. DGT-labile nickel decreased with increasing DOM concentration for only one of the three DOM. Modelled labile nickel concentrations (expressed as maximum dynamic concentrations, cdynmax) largely agreed with DGT-labile nickel and suggested that toxicity is explained by free Ni2+ concentrations. This study confirms that nickel toxicity is largely unaffected by DOM concentration or source and that both measured (DGT) and modelled (cdynmax and free Ni2+) nickel concentrations can explain nickel toxicity.


Assuntos
Chlorella , Poluentes Químicos da Água , Animais , Água Doce , Metais , Níquel/análise , Níquel/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
18.
Environ Pollut ; 266(Pt 2): 115141, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32659625

RESUMO

Australian tropical freshwaters can experience extreme seasonal variability in rainfall and run off, particularly due to pulse events such as storms and cyclones. This study investigated how seasonal variability in dissolved organic matter (DOM) quality impacted the chronic toxicity of copper to a tropical green alga (Chlorella sp.) in the presence of two concentrations of DOM (low: ∼2 mg C/L; high: ∼10 mg C/L) collected from three tropical waters. Copper speciation and lability were explored using diffusive gradients in thin-films (DGT) and modelled maximum dynamic concentrations (cdynmax) using data derived from the Windermere Humic Aqueous Model (WHAM VII). Relationships between copper lability and copper toxicity were assessed as potential tools for predicting toxicity. Copper toxicity varied significantly with DOM concentration, source and season. Copper toxicity decreased with increasing concentrations of DOM, with 50% growth inhibition effect concentrations (EC50) increasing from 1.9 µg Cu/L in synthetic test waters with no added DOM (0.34 mg C/L) up to 63 µg Cu/L at DOM concentrations of 9.9 mg C/L. Copper toxicity varied by up to 2-fold between the three DOM sources and EC50 values were generally lower in the presence of wet season DOM compared to dry season DOM. Linear relationships between DGT-labile copper and dissolved copper were significantly different between DOM source, but not concentration or season. Modelled cdynmax consistently under-predicted labile copper in high DOM treatments compared to DGT measurements but performed better in low DOM treatments, indicating that this method is DOM-concentration dependent. Neither speciation method was a good surrogate for copper toxicity in the presence of different sources of natural DOM. Our findings show that DOM source and season, not just DOM concentration, affect copper toxicity to freshwater biota. Therefore, DOM quality should be considered as a toxicity-modifying factor for future derivation of bioavailability-based site-specific water quality guideline values.


Assuntos
Chlorella , Microalgas , Poluentes Químicos da Água/análise , Austrália , Cobre/análise , Água Doce , Estações do Ano
19.
Appl Environ Microbiol ; 86(16)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503908

RESUMO

Teleost fish represent an invaluable repertoire of host species to study the factors shaping animal-associated microbiomes. Several studies have shown that the phylogenetic structure of the fish gut microbiome is driven by species-specific (e.g., host ancestry, genotype, or diet) and habitat-specific (e.g., hydrochemical parameters and bacterioplankton composition) factors. However, our understanding of other host-associated microbial niches, such as the skin mucus microbiome, remains limited. The goal of our study was to explore simultaneously the phylogenetic structure of the fish skin mucus and gut microbiome and compare the effect of species- and habitat-specific drivers on the structure of microbial communities in both tissues. We sampled 114 wild fish from 6 populations of 3 ecologically and phylogenetically contrasting Amazonian teleost species. Water samples were collected at each site, and 10 physicochemical parameters were characterized. The skin mucus, gut, and water microbial communities were characterized using a metabarcoding approach targeting the V3-V4 regions of the 16S rRNA. Our results showed a significant distinction between the phylogenetic profile and diversity of the microbiome from each microbial niche. Skin mucus and bacterioplankton communities were significantly closer in composition than gut and free-living communities. Species-specific factors mostly modulated gut bacterial communities, while the skin mucus microbiome was predominantly associated with environmental physicochemistry and bacterioplankton community structure. These results suggest that the variable skin mucus community is a relevant target for the development of microbial biomarkers of environmental status, while the more conserved gut microbiome is better suited to study long-term host-microbe interactions over evolutionary time scales.IMPORTANCE Whether host-associated microbiomes are mostly shaped by species-specific or environmental factors is still unresolved. In particular, it is unknown to what extent microbial communities from two different host tissues from the same host respond to these factors. Our study is one of the first to focus on the microbiome of teleost fish to shed a light on this topic as we investigate how the phylogenetic structure of microbial communities from two distinct fish tissues are shaped by species- and habitat-specific factors. Our study showed that in contrast to the teleost gut microbiome, skin mucus communities are highly environment dependent. This result has various implications: (i) the skin mucus microbiome should be used, rather than the gut, to investigate bacterial biomarkers of ecosystem perturbance in the wild, and (ii) the gut microbiome is better suited for studies of the drivers of phylosymbiosis, or the coevolution of fish and their symbionts.


Assuntos
Bactérias/isolamento & purificação , Caraciformes/microbiologia , Ciclídeos/microbiologia , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Pele/microbiologia , Animais , Bactérias/classificação , Brasil , Ecossistema , Mucosa/microbiologia , Filogenia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Especificidade da Espécie
20.
Environ Toxicol Chem ; 39(6): 1233-1243, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32143235

RESUMO

Fertilizers containing phosphate (PO43- ) are commonly used within the agricultural industry and are known to increase the bioavailability and mobility of metalloids like arsenic (As). This may increase plant uptake of As and hence pose a risk to human health. Arsenic and antimony (Sb) often co-occur in contaminated soils; however, little is known about the interactions between As and Sb with PO43- on their bioavailability, accumulation, and toxicity in plants. The present study investigated individual and combined As and Sb-contaminated soils across 2 soil PO43- concentrations using a commonly consumed leafy vegetable, choy sum (Brassica chinensis var. parachinensis). Increased soil PO43- had no clear influence on the bioavailability of As or Sb (derived from a sequential extraction procedure). At high PO43- concentration, B. chinensis accumulated higher amounts of As in the shoots and roots in both individual and co-contaminated soil, whereas Sb accumulation increased only when Sb was the only contaminant. When As was the only contaminant, the translocation of As from roots to shoots decreased as soil PO43- increased. Increased soil PO43- had no influence on Sb translocation from root to shoot. Although As was toxic (impaired growth) at low PO43- soil concentration, no toxicity was observed in the high-PO43- soil. No toxicity was observed for Sb in either low- or high-PO43- soils. Increased soil PO43- concentration ameliorated or masked As toxicity to plant growth and led to higher As concentration in the plant's edible parts. The addition of high soil PO43- concentrations ameliorated or masked As toxicity to plant growth in both individually and As + Sb co-contaminated soil; however, the plant's edible parts accumulated higher As and Sb concentrations. Environ Toxicol Chem 2020;39:1233-1243. © 2020 SETAC.


Assuntos
Antimônio/toxicidade , Arseniatos/toxicidade , Brassica/metabolismo , Fosfatos/análise , Poluentes do Solo/toxicidade , Solo/química , Antimônio/metabolismo , Arseniatos/metabolismo , Bioacumulação , Disponibilidade Biológica , Brassica/efeitos dos fármacos , Brassica/crescimento & desenvolvimento , Sinergismo Farmacológico , Humanos , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA